Reliability M odeling for Safety Critical Software

Norman F. Schneidewind, Fellow | EEE
|EEE Transactions on Reliability, Vol. 46, No.1, March 1997, pp. 88-98

Code I1S/Ss
Naval Postgraduate School
Monterey, CA 93943, U.SA.
Voice: (831) 656-2719
Fax :(831) 372-0445
Internet: nschneid@nps.navy.mil

K eywor ds. software reliability prediction, safety critical software, risk analysis.

Summary and Conclusions

We show how software reliability predictions can increase confidencein therdiability of
safety critical software such asthe NASA Space Shuttle Primary Avionics Software System
(Shuttle flight software). This objective was achieved using a novel approach to integrate
software safety criteria, risk anaysis, reliability prediction, and stopping rulesfor testing. This
approach is applicable to other safety critical software. We only cover the safety of the
software in asafety critical system. The hardware and human operator components of such
systems are not explicitly modeled nor are the hardware and operator induced software
faillures. Our concern iswith reducing therisk of al failuresattributed to software. Thus, our
use of the word safety refers to software safety and not to system safety. By improving the
reliability of the software, where the reliability measurements and predictions are directly

related to mission and crew safety, we contribute to system safety.

2

Remaining failures, maximum failures, total test time required to attain agiven fraction
of remaining failures, and time to next failure are shown to be useful reliability
measurements and predictions for: 1) providing confidence that the software has achieved
safety goals; 2) rationalizing how long to test a piece of software; and 3) analyzing the risk
of not achieving remaining failure and timeto next failure goals. Having predictions of the
extent that the software is not fault free (remaining failures) and whether it islikely to
survive amission (timeto next failure) provide criteriafor assessing therisk of deploying the
software. Furthermore, fraction of remaining failures can be used as both an operational
guality goal in predicting total test time requirements and, conversely, as an indicator of
operational quality as afunction of total test time expended.

Software reliability models provide one of severa tools that software managers of the
Shuttleflight software are using to provide confidencethat the software meetsrequired safety
goals. Other tools are inspections, software reviews, testing, change control boards, and
perhaps most important -- experience and judgement.

1. Introduction

We propose that two categories of software reliability measurements (i.e., observed failure
data used for model parameter estimation) and predictions (i.e., forecasts of future reliability
using the parameterized model) be used in combination to assist in assuring the safety of the
softwarein safety critical systemslike the Shuttle flight software. The two categories are: 1)

measurements and predictionsthat are associated with residual softwarefaultsand failures,

3

and 2) measurements and predictions that are associated with the ability of the software to
survive amission without experiencing a seriousfailure. In thefirst category are: remaining
failures, maximum failures, fraction of remaining failures, and total test time required to
attain a given number or fraction of remaining failures. In the second category are: time
to next failure and total test time required to attain a given timeto next failure. In addition,
we define the risk associated with not attaining the required remaining failures and time to
next failure. Lastly, we derive a quantity from the fraction of remaining failures that we call
operational quality.

The benefits of predicting these quantities are: 1) they provide confidence that the
software has achieved safety goals, and 2) they provide ameans of rationalizing how long
to test a piece of software (stopping rule). Having predictions of the extent that the software
Is not fault free (remaining failures) and its ability to survive amission (timeto next failure)
are meaningful for assessing therisk of deploying safety critical software. In addition, with
thistype of information a software manager can determine whether moretesting iswarranted
or whether the software is sufficiently tested to allow its release or unrestricted use. These
predictions, in combination with other methods of assurance, such as inspections, defect
prevention, project control boards, process assessment, and fault tracking, provide a
guantitative basis for achieving safety and reliability goals[3].

Risk in the Webster's New Universal Unabridged Dictionary is defined as: "the chance

of injury; damage, or loss' [19]. Some authors have extended the dictionary definition as

4

follows: "Risk Exposure=Probability of an Unsatisfactory Outcome* Loss if the Outcome
Is Unsatisfactory" [2]. Such a definition is frequently applied to the risks in managing
software projects such as budget and schedule dlippage. In contrast, our application of the
dictionary definition pertainsto the risk of executing the software of asafety critical system
where thereisthe chance of injury (e.g., astronaut injury or fatality), damage (e.g., destruction
of the Shuttle), or loss (e.g., loss of themission) if aserious software failure occurs during
amission. We have developed risk criterion metricsto quantify the degree of risk associated
with such an occurrence.

L ockheed-Martin, the primary contractor on the Shuttle flight software project, is
experimenting with a promising algorithm which involves the use of the Schneidewind
Software Reliability Model to compute a parameter: fraction of remaining failures as a
function of the archived failure history during test and operation [10]. Our prediction
methodol ogy uses this parameter and other reliability quantitiesto provide bounds ontotal
test time, remaining failures, operational quality, and timeto next failurethat are necessary
to meet Shuttle safety requirements. We also show that there is a pronounced asymptotic
characteristic to the total test time and operational quality curvesthat indicate the possbility
of big gainsin reliability astesting continues; eventualy the gains become margina astesting
continues. We conclude that the prediction methodology isfeasble for the Shuttle and other

safety critical systems.

5

We only cover the safety of the software in asafety critical system. The hardware and
human operator components of such systemsare not explicitly modeled nor are the hardware
and operator induced software failures. However, in practice, these hardware-software
Interface and human operator-software interface failuresmay bevery difficult to identify as
such; these failures may be recorded as software failures. Our concern iswith reducing the
risk of all failuresattributed to software. Thus, our use of the word safety refersto software
safety and not to system safety.

Although remaining failureshas been discussed in general asatype of softwarerdiability
prediction [13], and various stopping rules for testing have been proposed, based on costs
of testing and releasing software[4, 5, 8, 17], failureintensity[12], and testability [18], our
approach is novel because we integrate software safety criteria, risk analysis, reliability
prediction, and astopping rulefor testing. For asystem like the Shuttle, where human lives
are a risk, we cannot use economic or time-to-market criteria to determine when to deploy
the software. Although failure intensity has proven useful for allocating test effort and
determining when to stop testing in commercial systems[12], this criterion is not directly
related to software safety. In asafety critical system, the prediction of remaining failuresand
identification of the faults which cause them is more relevant to ensuring safety than the trend
of fallureintengty over time. Thelatent faults must be found and removed through additional
testing, inspection, or other means, if the safety of the mission is not to be jeopardized.

Furthermore, as we will show, remaining failures, along with time to next failure, can be

6

used as risk criteria. It is not clear how failure intensity could be a meaningful safety
criterion.

Because testability attempts to quantify the probability of failure, if the code isfaulty
[18], this criterion has a relationship with reliability if we know that the code is faulty.
However in the Shuttle and other safety critical software, our purposeisto predict whether
the codeis faulty. For safety critical software, we must use reliability measurements and
predictions to assess whether safety and mission goals are likely to be achieved.

We first define two criteria for software safety. Then we apply these criteria to risk
analysis of safety critical software, using the Shuttle flight software as an example. Next, we
define and provide brief derivations for avariety of prediction equations that are used in
reliability prediction and risk analysis; included is the relationship between time to next failure
and reduction in remaining failures. Thisisfollowed by an explanation of the principal of
optimal selection of failure data that involves sel ecting only the most relevant set of failure
datafor reliability prediction, with the result of producing more accurate predictions than
would be the case if the entire set of data were used. Then we show how the prediction
equations can be used to integrate testing with reliability and quality. An exampleis shown
of how the risk analysis and reliability predictions can be used to make decisions about
whether the software is safe to deploy. Lastly we show validation results for a variety of

predictions.

Acronyms

OlIA: Shuttle operational increment A

OIB: Shuttle operational increment B

OIC: Shuttle operational increment C

OID: Shuttle operational increment D

Assumptions[1]:

1.

2.

o

Faults that cause failures are removed.
Asmorefailures occur and more faults are corrected, remaining failures will be reduced.
The remaining failures are "zero" for those Ol's that were executed for extremely long
times (years) with no additional failurereports; correspondingly, for these Ol's, maximum
failures equalstotal observed failures.
The number of failures detected in one interval is independent of the failure count in
another.

Only "new" failuresare counted (i.e., failluresthat are repeated as a consequence of not

correcting afault are not counted).

Definitions

o Interval: an integer time unit t of constant length defined by t-1<t<t+1, where t>0; failures

are counted in intervals (e.g., onefailure occurred ininterval 4) [1, 7].

o Number of Intervals: the number of contiguous integer time unitst of constant length

8

represented by a positive real number (e.g., the predicted time to next failure is 3.87
intervals).

0 Operational Increment (Ol): a software system comprised of modules and configured
from a series of buildsto meet Shuttle mission functional requirements.

o Time: Continuous CPU execution time over an interval range.

Severity Codes:

1. Severe Vehicle or Crew Performance Implications.

2. Affects Ability to Complete Mission (Not a safety issue).

3. Workaround Available, Minimal Effect on Procedures.

4. Insignificant (Paperwork, etc.).

5. Not Visibleto User.

Nomenclature

o Predicted at time t: a prediction made in the interval t.

0 Safety: software safety; not system safety.

Notation

a failure rate at the beginning of interval s

a negative of derivative of faillureratedivided by fallurerate (i.e., reativefalure
rate)

F(i) predicted failure count in the range [1,i]; used in computing MSE,

F;i observed failure count during interva j snceinterva i; used in computing M SE;

F(0)

F(t,.t)

F(4)

M SE,
MSE,
MSE;
p(t)
Q(t)

r(t)
r(t)

2r(Te1)

predicted failure count in the range [1, t]

given number of failuresto occur after interval t; used in predicting T(t)
predicted failure count in the range [t,,t,]

predicted failure count intherange[1,4]; maximum failluresover thelife of the
software

current interval

next interval j>i where F,>0

maximum j#t where F;>O0.

mean sguare error criterion for selecting s for failure count predictions
mean sguare error criterion for selecting s for remaining failure predictions
mean sguare error criterion for selecting s for time to next failure predictions
fraction of remaining failures predicted at time t

operational quality predicted at timet; the complement of p(t); the degree to
which software is free of remaining faults (failures)

critical value of remaining failures; used in computing RCM r(t,)

remaining failures predicted at timet

remaining failures predicted at total test timet,

reduction in remaining failures that would be achieved if the software were

executed for atime T, predicted at timet

RCM r(t)
RCM TH(t)

S

10

risk criterion metric for remaining failures at total test timet,

risk criterion metric for time to next failure at total test timet,

starting interval for using observed failure data in parameter estimation
optimal starting interval for using observed failure data, as determined by M SE
criterion

cumulativetimeintherange[1,t]; last interval of observed failure data; current
interval

mission duration (end time-start time); used in computing RCM T(t,)

total test time (observed or predicted)

time to next failure(s) predicted at time't

time to next failure predicted at total test timet,

timeto next N failuresthat would be achieved if remaining failures were reduced
by @r, predicted at time t

timesinceinterval i to observe number of failuresF; duringinterval j; usedin
computing M SE;

observed failure count in the range [1,i]

observed failure count in the range [1,s-1]

observed failure count in the range [st]

observed failure count in the range [st]

observed failure count in the range [1,1]

11

Xy observed failure count in the range [1,t,]

2. Criteriafor Safety

If we define our safety goal asthe reduction of failuresthat would causeloss of life, loss

of mission, or abort of mission to an acceptable level of risk [11], then for software to be
ready to deploy, after having been tested for total time t, we must satisfy the following
criteria
1) predicted remaining failures r(t,)<r,, (1)
wherer.is a specified critical value, and
2) predicted time to next failure T(t)>t,, (2
wheret., is mission duration.
For systemsthat are tested and operated continuously like the Shuttle, t, T(t), and t, are
measured in execution time. Note that, aswith any methodology for assuring software safety,
we cannot guarantee safety. Rather, with these criteria, we seek to reduce the risk of
deploying the software to an acceptable level.

2.1 Remaining Failures Criterion

Using assumption 1 that the faults that cause failures are removed (thisisthe case for the
Shuttle), criterion 1 specifiesthat theresidual failures and faults must be reduced to alevel
wheretherisk of operating the software is acceptable. Asapractical matter, we suggest r =1.
That is, the goal would be to reduce the expected remaining failuresto less than one before

deploying the software. The reason for this choice is that one or more remaining failures

12
would constitute unacceptabl e risk for safety critical systems. Thisisthe threshold used by

the Shuttle software managers. One way to specify r.isby failure severity leve (e.g., severity
level 1 for lifethreatening failures). Another way, which imposesa more demanding safety
requirement, isto specify that r, represents all severity levels. For example, r(t,)<1 would
mean that r(t) must be less than one failure, independent of severity level.

If we predict r(t)$r,, we would continue to test for atotal timet,'>t, that is predicted to
achiever(t,)<r., using assumption 2 that we will experience morefailures and correct more
faults so that the remaining failures will be reduced by the quantity r(t)-r(t)). If the
developer does not have the resources to satisfy the criterion or is unable to satisfy the
criterion through additional testing, therisk of deploying the software prematurely should
be assessed (see the next section). We know from Dijkstra’s dictum that we cannot
demonstrate the absence of faults[6]; however we can reduce therisk of failures occurring
to an acceptable level, as represented by r.. Thisscenarioisshown in Figure 1. In case Awe
predict r(t)<r, and the mission beginsat t. In case B we predict r(t)$r. and postpone the
mission until wetest for total timet,' and predict r(t,)<r. In both casescriterion 2) must aso
be satisfied for the mission to begin.

2.2 Timeto Next Failure Criterion

Criterion 2 specifiesthat the software must survive for atime greater than the duration of
the mission. If we predict T(t,)#t.,, we would continue to test for atotal timet,">t, that is

predicted to achieve T(t")>t,,, using assumption 2 that we will experience morefailuresand

13

correct more faults so that the time to next failure will be increased by the quantity T(t.")-
TH(t). Again, if itisinfeasible for the devel oper to satisfy the criterion for lack of resources
or failureto achieve test objectives, the risk of deploying the software prematurely should be
assessed (see the next section). This scenario is shown in Figure 2. In case A we predict
T(t)>t,, and the mission begins at t. In case B we predict T(t)#t,, and postpone the
mission until we test for total timet," and predict T(t")>t. In both cases criterion 1) must
also be satisfied for the mission to begin. If neither criterion is satisfied, we test for atime
which isthe greater of t, or t,".

3. Risk Assessment

The amount of total test time t, can be considered a measure of the degree to which
softwarereliability goalshave been achieved. Thisisparticularly the casefor systemslikethe
Shuttle where the software is subjected to continuous and rigorous testing for several years
inmultiplefacilities, usng avariety of operational and training scenarios(e.g., by Lockheed-
Martin in Houston, by NASA in Houston for astronaut training, and by NASA at Cape
Kennedy). If we view t, as an input to arisk reduction process, and r(t,) and T(t) asthe
outputs, we can portray the processas shownin Figure 3, wherer_andt, are shown as "risk
criterialevels' of safety that control the process. Whilewe recognizethat total test timeisnot
the only consideration in devel oping test strategies and that there are other important factors,
like the consequencesfor reliability and cost, in selecting test cases[20], nevertheless, for

theforegoing reasons, total test time hasbeen found to be strongly positively correlated with

14
reliability growth for the Shuttle [15].

3.1 Remaining Failures

We can formulate the mean value of therisk criterion metric (RCM) for criterion 1 as
follows:

RCM r(t)= (r(t)-r)/r=(r(t)/r)-1 (3)

We plot equation (3) in Figure 4 as afunction of t, for r.=1, where positive, zero, and
negative values correspond to r(t)>r., r(t)=r., and r(t,)<r,, respectively. In Figure 4, these
values correspond to the following regions. UNSAFE (i.e., above the X-axis predicted
remaining failures are greater than the "safe" value); NEUTRAL (i.e., on the X-axis
predicted remaining failures equal to the "safe" value); and SAFE (i.e., below the X-axis
predicted remaining failures are less than the "safe" value).

This graph isfor the Shuttle operational increment OID. In this example we seethat at
approximately t=57 the risk transitions from the UNSAFE region to the SAFE region.

3.2Timeto Next Failure

Smilarly, we can formulate the mean vaue of therisk criterion metric (RCM) for criterion
2 asfollows:
RCM TH(t)=(t,- T(t)/t,=1-(TAt))/t,, (4)
We plot equation (4) in Figure 5 asafunction of t, for t =8 days (atypical mission duration
time for this Ol), where positive, zero, and negative risk correspondsto T(t)<t., T-(t)=t,,

and T(t)>t,, respectively. InFigure5, these values correspond to the following regions:

15

UNSAFE (i.e., abovethe X-axis predicted timeto next failureislessthan the"safe" value);
NEUTRAL (i.e., on the X-axis predicted timeto next failureis equal to the "safe" value); and
SAFE (i.e., below the X-axis predicted time to next failureis greater than the "safe” value).

This graph isfor the Shuttle operational increment OIC In this example we see that at

all values of t, the RCM isin the SAFE region.

4. Approach to Prediction

In order to support our safety goal and to assess the risk of deploying the software, we
make various reliability and quality predictions. In addition, we use these predictions to
perform tradeoff analysis between reliability and total test time. Thus, our approachisto use
a software reliability model to predict the following: 1) maximum failures, remaining
failures, and operational quality (as defined in the next section); 2) time to next failure
(beyond the last observed failure); 3) total test time necessary to achieve required levels of
remaining failures (fault) level, operational quality, and time to next failure; and 4)
tradeoffs between increasesin levels of reliability and quality with increasesin testing.

5. Prediction Equations

The following prediction equations are based on the Schnel dewind Software Reliability
Model [1, 14, 15, 16], one of the four models recommended in the AIAA Recommended
Practice for Software Reliability [1].These equations use assumptions 4-7 in the
Introduction. We derive these equationsin the next section. . We apply them to analyze the

reliability of the Shuttle flight software. All predictions are mean values.

16

Because the flight software isrun continuously, around the clock, in simulation, test, or
flight, "time" refersto continuous execution time and total test timerefersto execution time
that isused for testing. Failure count intervalsare equal to 30 days of continuous execution
time. Thisinterval islong because the Shuttle software is tested for several years; a 30 day
interval length is a convenient for recording failures for software that is tested this long.

In the following equations, the parameter a isthe failure rate at the beginning of interval
s, the parameter & isthe negative of derivative of failure rate divided by failurerate (i.e.,
relativefallurerate); tisthelast interva of observed failure data; sisthe starting interval for
using observed failure datain parameter estimation that will result in the best estimates of &
and a and the most accurate predictions[14]; X, isthe observed failure count in the range
[1,5-1]; X, isthe observed failure count in the range [s,t]; and X=X, ,+X,,. These failure
count interval relationshipsare shown in Figure 6; also shown istotal test timet,. Failuresare
counted against operational increments (Ols). Datafrom four Shuttle Ol's, designated OIA,
OIB, OIC, and OID are used in this analysis.

5.1 Cumulative Failures

When maximum likelihood estimates are obtained for the parameters a and 4, with sas
the starting interval for using observed failure data, we obtain the predicted failure count in
therange[st]:

F.=(&/8)[1-exp(-a((t-s+1)))] (5)

Furthermore, if we add X ,, the observed failure count in the range [1,s-1], we obtain

17

predicted failure count in therange[1, t] :
F(t)=(a/a)[1-exp(-a((t-st+1)))] +X., (6)

5.2 Failuresin an Interval Range

If we set t/t, and subtract X,,=X,,+X,,,, the observed failure count in the range [1,t;],
from equation (6), we obtain the predicted failure count in the range [t,,t,]:
F(t,,t,)=(a/a)[1-exp(-a((t,-s+1)))]-Xou (7)

5.3 Maximum Failures

If welet 164 in equation (6), we obtain the predicted failure count in therange [1,4]
(i.e., maximum failures over the life of the software):
F(4)=a/a+X_, (8)

5.4 Remaining Failures

To obtain predicted remaining failures r(t) at time t, we subtract X=X,,+X, from
equation (8):
r(t)=(&/8)-X=F(4)-X, 9)

r(t) can also be expressed as a function of total test timet, by substituting equation (5)
into equation (9) and setting t/t;:

r(t)=(a/a)(exp-a[t-(s-1)]) (10)

5.5 Fraction of Remaining Failures:

If we divide equation (9) by equation (8), we obtain fraction of remaining failures

18

predicted at timet:
p(t)=r(t)/F(4) (11)

5.6 Operational Quality

The operational quality of software isthe complement of p(t). It is the degreeto which
software isfree of remaining faults (failures), using assumption 1 that the faults that cause
failures are removed. It is predicted at timet as follows:

Q(t)=1-p(t) (12)

5.7 Total Test Timeto Achieve Specified Remaining Failures

The predicted total test timerequired to achieve a specified number of remaining failures

at t, r(t), is obtained from equation (10) by solving for t;:

t," [logla/(a[r(t)])]1]/a%(s&1) (13)

5.8 Timeto Next Failure

By substituting t,=t+T(t) in equation (7), setting t,/t, defining F=F(t,t+T.),and solving
for T(t), we obtain the predicted time for the next F, failuresto occur, when the current time
ISt :

T(t) " [(log[&/ (é&é(xs,t% F))])/al&(t&shl)

for (&/a)>(X_%F,) (14)

Thetermsin T(t) have the following definitions:

19

t: Current interval;
) O Observed failure count in the range [s,t]; and
F.: Given number of failuresto occur after interval t.

We consider equations (5)-(11) and (14) to be predictors of reliability that are related to
safety; equation (13) represents the predicted total test time required to achieve stated safety
goals. If a quality requirement is stated in terms of fraction of remaining failures, the
definition of Q as Operational Quality, equation (12), is consistent with the IEEE definition
of quality: the degree to which a system, component, or process meets specified
requirements[9]. For example, if areliability specification requiresthat softwareisto have
no morethat 5% remaining failures (i.e., p=.05, Q=.95) after testing for atotd of t, intervals,
then a predicted Q of .90 would indicate the degree to which the software meets specified
requirements.

5.9 Relating Timeto Next N Failures and Remaining Failures Predictions

Although we have shown therisk analysisand prediction equationsfor remaining failures
and time to next failure separately, it would be useful to combine these quantitiesin one
equation so that we can predict the effect on one quantity for agiven changein the other. In
particular we want to predict, at timet, the time to the next N failures, T-(2r,t), that would
beachieved if remaining failureswere reduced by @r. We use assumption 1 that N=2r; that
IS, faults that cause failures are removed. When N=1, we have the familiar time to next

failure. When N>1, T(2r,t) isinterpreted as cumulative execution timefor the N failuresto

20

occur. Conversely, we want to predict, at time t, the reduction in remaining failures,
ar(T.t), that would be achieved if the software were executed for atime T .. Thisrelationship
Isderived by using equation (10) and setting 2r=r(t,)-r(t), t=t,+2t, and t,/t, and solving for
A/ T(3r,0):
Te(®r,0)=(-1/a)[log[1-((&%r/a)(exp(a(t-st1))))]] (15
for ((&2r/&)(exp(a(t-s+1))))<1.

Equation (15) isanaogousto equation (14). Also, @r in equation (15) isanalogousto F, in
equation (14), if we use assumption 1 that the faults that cause the F, failures are removed,
with acorresponding reduction inremaining failures. Thetwo equations produce the same
result for the same parameter values. Equation (15) has the advantage of being a simpler
computation because it does not require the observed data vector X, which is used in
equation (14). Also, equation (15) is convenient to usefor trading off timeto next N failures
against reduction in remaining failures, and the effort and the total test time implicit in
making the reductions.

We can invert equation (15) to solve for the reduction in remaining failures that would

be achieved by executing the software for atime T..

2r(Te)=(a/a)[exp(-a(t-st+1))][1-exp(-a(T))] (16)

6. Criterion for Optimally Selecting Failure Data

Thefirg step in identifying the optimal vaue of s (S) isto estimate the parameters a and

afor eachvalue of sintherange[1,t] where convergence can be obtained [1, 14, 16]. Then

21

the Mean Sguare Error (MSE) criterion isused to select s, the failure count interval that
corresponds to the minimum M SE between predicted and actual failure counts (MSE,), time
to next failure (MSE;), or remaining failures (M SE,), depending on the type of prediction.
Thefirst two werereported in [14]. Inthis paper we develop M SE,. M SE, isa so the criterion
for maximum failures (F(4)) and total test time (t,) because the two are functionally related
to remaining failures (r(t)); see equations 9 and 13. We also show M SE; becauseit is used
in predictions that involve time to next failure: T(t), T(Tr.t), and @r(T.,t). Once &, &, and
sare estimated from observed counts of failures, the foregoing predictions can be made. The
reason M SE is used to evaluate which triple (&, &, s) isbest in therange [1,t] isthat research
has shown that because the product and process change over the life of the software, old
falluredata(i.e., s=1) are not as representative of the current state of the product and process
asthe morerecent failuredata (i.e., s>1) [14]. The optimal vauesof s(s) that wereused in
the risk analysis and prediction examples are shown in Tables 1-4.

The Satistical Modeling and Estimation of Reliability Functions for Software
(SMERFS) [7] is used for all predictions except t,, T-(2r,t), and @r(T,t), which are not
implemented in SMERFS.

6.1 Mean Square Error Criterion for Remaining Failures

Although we can never know whether additional failures may occur, neverthelesswe can
form the difference between two equations for r(t): (9), which isafunction of predicted

maximum failures and the observed failures, and (10), which isafunction of total test time,

22
and apply the M SE criterion. Thisyieldsthefollowing Mean Square Error (MSE,) criterion

for number of remaining failures:

5 [FOax)?

(17)
' t&sh1

MSE

where F(i) is the predicted failure count in the range [1,i] and X; is the observed failure

count in the range [1,i].

6.2 Mean Square Error Criterion for Timeto Next Failure(s)
The Mean Square Error (M SE;) criterion for time to next failure(s), which was derived

in [14], is given by equation (18):

J&l
§ [[o0l&/(88A(X, F,)]/a&(&HD]&T]
MSE, " — &3 (18)

for (é/a)>(xsli%|:ij)

The termsin MSE; have the following definitions:

i: Current interval;

j: Nextinterval j>i where F,;>0;

X,;:Observed failure count in the range [s,i];

F;;: Observed failure count during interval j since interval i;T;: Time sincei to observe

number of failures F; during j (i.e., T;=j-i)

23

t: Thelast interval of observed failure data; and
J. Maximum j#t where F;>0.

7. Relating Testing to Reliability and Quality

7.1 Predicting Total Test Time and Remaining Failures

We use equation (8) to predict maximum failures (F(4)=11.76) for Shuttle OIA. Using
given values of p and equation (11) and setting t/t,,, we predict r(t) for each value of p. The
values of r(t,) are the predictions of remaining failures after the Ol has been executed for
total test timet,. Then we use the values of r(t,) and equation (13) to predict corresponding
values of t. Theresults are shown in Figure 7, wherer(t,) and t, are plotted against p for
OIA. Notethat required total test timet, risesvery rapidly at small valuesof pand r(t,). Also
note that the maximum value of p on the plot corresponds to t=18 and that smaller values
correspond to future values of t, (i.e., t>18).

7.2 Predicting Oper ational Quality

Equation (12) is a useful measure of the operational quality of software because it
measuresthe degree to which faults have been removed from the software (using assumption
1 that the faults that cause failures are removed), relative to predicted maximum failures. We
call thistype of quality operational (i.e., based on executing the software) to distinguish it
from static quality (e.g., based on the complexity of the software).

Using given values of p and equations (11) and (12)and setting t/t,, we computer(t,) and

Q, respectively. The values of r(t) are then used in equation (13) to compute t.. The

24

corresponding values of Q and t, are plotted in Figure 8 as Operational Quality and Total
Test Time, respectively for OlIA. We again observe the asymptotic nature of the testing
relationship in the great amount of testing required to achieve high levels of quality.

7.3 Predicting Timeto Next Failure

First, we show the actual timeto next failurein Figure 9 for Ol A on the solid curve that
has occurred in the execution time range t=[1,18], where one failure occurred at t=4, 14, and
18, and twofailures occurred at t=8 and 10. All failureswere Severity Level 3: "Workaround
available; minimal effect on procedures’. Theway to read the graph isasfollows: If wetake
agiven failure, Failure 1, for example, it occurs at t=4; therefore, at t=1 the time to next
failure=3 (4-1); at t=2 the time to next failure=2 (4-2); at t=4 Failure 1 occurs, so thetime
to next failure=4 (8-4) now refersto Failure 2, etc. Next, using equation (14), we predict
the time to next failure T-(18) to be 4 (3.87 rounded) on the dashed curve. Based on the
foregoing, this prediction indicates we should continue testing if T(18)=3.87#t, (mission
duration).

7.4 Predicting Tradeoffs of Time to Next N Failures with Reduced Remaining

Failures

By using equation (15), we can predict timeto next N failures, T-(2r,t), asafunction of
reductioninremaining failures, 2r. Thisisshown in Figure 10 for OlA , where, for example,
with @r=1, we predict T-(1,18)=3.87 (i.e.,, a reduction in remaining failures of 1

correspondsto achieving atimeto next failureof 3.87 intervalsfromthe current interval 18).

25

Conversaly, by using equation (16), we predict reduction in remaining failures, 2r(Tgt),
asafunction of timeto next failure, T. Thisisshown in Figure 11 for OIA, where, for
example, with T=3.87, we predict 2r(3.87,18)=1 (i.e., executing OIA for a time to next
failure of 3.87 intervals from the current interval 18 corresponds to achieving areductionin
remaining failuresof 1). We provide further elaboration of these graphsin the next section.

8. Making Safety Decisions

In making the decision about how long to test, t,, we apply our safety criteriaand risk
assessment approach. We use Table 1 to illustrate the process. For =18 (when the last
failureoccurred on OlA), r =1, and t =8 days (.267 intervals), we show remaining failures,
RCM for remaining failures, time to next failure, RCM for time to next failure, and
operational quality. These resultsindicate that safety criterion 2 is satisfied but not criterion
1 (i.e., UNSAFE with respect to remaining failures); also operational quality islow.

By looking at Figure 10 and Table 1, we see that if we reduce remaining failures r(18)
by 1 from 4.76 to 3.76 (non-integer values are possible because the predictions are mean
values), the predicted time to next failure that would be achieved is T(18)=3.87 intervals.
These predictions satisfy criterion 2 (i.e., To(18)=3.87>t.=.267) but not criterion 1 (i.e.,
r(18)=4.76>r=1). Noteasoin Figure 10 and Table 1 that fraction of remaining failures p=1-
Q=.40 at r(18)=4.76. Now, if we continue testing for atotal time t=52 intervals, as shown
in Figure 10 and Table 1, and reduce remaining failures from 4.76 to .60, the predicted time

to next 4.16 failures that would be achieved is 33.94 (34, rounded) intervals. This

26

corresponds to t=18+34=52 intervals. That is, if we test for an additional 34 intervals,
starting at interval 18, we would expect to experience 4.16 failures. These predictions now
satisfy criterion 1 because r(52)=.60<r.=1. Note also in Figure 10 and Table 1 that fraction
of remaining failures p=1-Q=.05 at r(52)=.60. Using the converse of the relationship in
Figure 10, provides another perspective, as shown in Figure 11, where we see that if we
continue to test for an additional T=34 intervals, starting at interval 18, the predicted
reduction in remaining failures that would be achieved is 4.16 or r(52)=.60.

Lastly, Figure 12 showsthe Launch Decision, relevant to the Shuttle, (or, genericaly, the
Deployment Decision), where remaining failures are plotted against total test timefor Ol A.
With theseresultsin hand, the software manager can decide whether to deploy the software
depending on factors such as predicted remaining failures, as shown in Figure 12, along
with considering other factors such as the trend in reported faults over time, inspection
results, etc.. If testing wereto continue until t=52, the predictionsin Figure 12 and Table 1
would be obtained. These results show that criterion 1 is now satisfied (i.e., SAFE) and
operational quality is high. We also see from Figure 12 that at this value of t,, further
increasesint, would not result in asignificant increasein reliability and safety. Also note that
at t=52 it is not feasible to make a prediction of T-(52) because the predicted remaining

failuresisless than one.

27

Table 1Safety Criteria Assessment

OlA

E
ﬂ B _13.49
52 § .534] .061 .60 B -.40 * * .95

30 day Total Test Time and Time to Next Failure Intervals.

* Cannot predict because predicted Remaining Failuresis less than one.

9. Summary of Predictions and Validation

9.1 Predictions

Table 2 showsasummary of remaining and maximum failure predictionscompared with
actual failure data, where available, for OIA, OIB, OIC, and OID. Because we do not know
the actual remaining and maximum failures, we use assumption 3: remaining failures are
"zero" for those Ol's (B, C, and D) that were executed for extremely long times (years) with
no additional failure reports; correspondingly, for these Ol's, we use assumption 3 that

maximum failures equal s total observed failures.

28
Table?2

Predicted Remaining and Maximum Failures versus Actuals

e dsbalalre) JAcuar | F4 JAcualF

7A

13°
13°
14°

30 day Total Test Time Intervals

Timeof last recorded failure:

A. No additional failures have been reported after 17.17 intervals.

B. The last recorded failure occurred at 63.67 intervals.

C. Thelast recorded failure occurred at 43.80 intervals.

D. The last recorded failure occurred at 65.03 intervals.

Table 3 showsasummary of total test time and time to next failure predictions compared

with actual execution time data, where available, for OIA, OIB, OIC, and OID.

29
Table3

Predicted Total Test Timeand Timeto Next Failure versus Actuals

30 day Total Test Time and Timeto Next Failure Intérval S.
* Cannot predict because predicted Remaining Failuresis less than one.
Additional Predictionsfor OID:
Thefollowing are additional predictionsof tota test timefor OID that are not listed
in Table 3: t(r=2)=43.35, Actual=45.17; t(r=3)=35.47, Actual=23.70.
Table 4 showsasummary of the predictions of timeto next failurefor agiven reduction
in remaining failures of 1 and the predictionsof reductionin remaining failuresfor given
time to next failure compared with actua execution time and failure data, where available, for

OIA, OIB, OIC, and OID.

30
Table4

Predicted Tradeoffs of Timeto Next Failurewith Reduced Remaining Failures

versus Actuals

30 day Tota Test Time and Time to Next Failure Intervals.

* Cannot predict because predicted Remaining Failuresis less than one.

9.2 Validation

A total of 18 predictionswere made across Tables 2, 3, and 4, where there was an actual
valueto compare: threer(t), four F(4), four t,, two T(t), two T-(Tr,t), and three Tr(T.,t). The
mean relative error (mean of (actual-predicted)/actual) of prediction is 22.92% and the
standard deviation is 27.61%. In making these predictions we note both the sparsity of post-
delivery faillures and the extremely long test times for Shuttle flight software, as summarized
in Table 5. See the Appendix for a listing of the failure data. Despite the fact that the
Schneldewind Softwar e Reliability Mode uses optimal selection of failure data, and thusless
than thefull set of data, there must be aminimum number of failuresto start the parameter
estimation process, understanding that the model will then select the optimal value of §(s).

Thus, given the sparsity of the data, all failuresin Table 5 were used in parameter estimation,

31

regardless of their severity. Furthermore, as described earlier, a more conservative risk
assessment is produced if al categories of failures are included in the analysis.
Table5

Failure Distribution by Severity Code

30 day Total Test Time Intervals.

* Unknown Severity for two failures

There are no post-delivery Severity 1 or 5 failuresin the above Operational Increments.

APPENDI X

Observed Failure Counts

(Interval i = 30 days execution tine)
L OA aB ac ab
1 0 1 0 0
2 0 1 0 0
3 0 1 0 0
4 1 2 0 0
5 0 1 0 3
6 0 0 2 1
7 0 0 1 0
8 2 2 3 1
9 0 1 1 0
10 2 0 0 1
11 0 2 0 1
12 0 0 0 0
13 0 1 1 2
14 1 0 1 0
15 0 0 0 0
16 0 0 0 0
17 0 0 1 0
18 1 0 0 1
19 0 0 0
20 0 1 0
21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 1
25 0 0 0
26 0 0 0
27 0 0 0
28 0 1 0
29 0 0 0
30 0 0 0
31-63 0

64 1

31-43 0

44 1

31-45 0
46 1
47-58 0
59 1
60- 65 0
66 1
Tot al s:

7 13 13 14

33

Acknowledgments

We acknowledge the support provided for thisproject by Dr. William Farr, Naval Surface
Warfare Center; Ms. Alice Lee of NASA; U.S. Marine Corps Tactical Systems Support
Activity; and Mr. Ted Keller and Ms. Patti Thornton of Lockheed-Martin. We also
acknowledge the helpful comments of the reviewers.

References

[1] Recommended Practice for Software Reliability, R-013-1992, American National Standards Institute/American Institute of
Aeronautics and Astronautics, 370 L'Enfant Promenade, SW, Washington, DC 20024, 1993.

[2] Barry W. Boehm, "Software Risk Management: Principles and Practices’, IEEE Software, Vol. 8, No. 1, January 1991, pp. 32-
41.

[3] C.Billings, et al, "Journey to aMature Software Process’, IBM Systems Journal, Vol. 33, No. 1, 1994, pp. 46-61.

[4] SiddharthaR. Dala and Allen A. McIntosh, "When to Stop Testing for Large Software Systems with Changing Code", IEEE
Transactions on Software Engineering, Vol. 20, No. 4, April 1994, pp. 318-323.

[5] Siddhartha R. Dalal and Allen A. Mclntosh, "Some Graphical Aids for Deciding When to Stop Testing", |EEE Journal on
Selected Areas in Communications, Vol. 8, No.2, February 1990, pp. 169-175.

[6] E. W. Dijkstra, "Structured Programming”, Software Engineering Techniques, eds. J. N. Buxton and B. Randell, NATO
Scientific Affairs Division, Brussels 39, Belgium, April 1970 pp. 84-88.

[7]1 William H. Farr and Oliver D. Smith, Statistical Modeling and Estimation of Reliability Functions for Software (SVIERFS)
Users Guide, NAVSWC TR-84-373, Revision 3, Naval Surface Weapons Center, Revised September 1993.

[8] WillaEhrlich, et a, "Determining the Cost of a Stop-Test Decision”, |EEE Software, March 1993, pp. 33-42.

[9] |IEEE Standard Glossary of Software Engineering Terminology, |IEEE Std 610.12.1990, The Institute of Electrical and
Electronics Engineers, New Y ork, New Y ork, March 30, 1990.

[10] Ted Keller, Norman F. Schneidewind, and Patti A. Thornton "Predictions for Increasing Confidence in the Reliability of the
Space Shuttle Flight Software”, Proceedings of the AIAA Computing in Aerospace 10, San Antonio, TX, March 28, 1995, pp.
1-8.

[11] Nancy G. Leveson, "Software Safety: What, Why, and How", ACM Computing Surveys, Vol. 18, No. 2, June 1986, pp. 125-163.

[12] John D. Musa and A. Frank Ackerman, "Quantifying Software Validation: When to Stop Testing?', |IEEE Software, Vol. 6,
No. 3, May 1989, pp. 19-27.

[13] John D. Musa, et a, Software Reliability: Measurement, Prediction, Application, McGraw-Hill, New Y ork, 1987.

[14] Norman F. Schneidewind, "Software Reliability Model with Optimal Selection of Failure Data’, |IEEE Transactions on
Software Engineering, Vol. 19, No. 11, November 1993, pp. 1095-1104.

[15] Norman F. Schneidewind and T. W. Keller, "Application of Reliability Models to the Space Shuttle", |IEEE Software, Val. 9,
No. 4, July 1992 pp. 28-33.

[16] Norman F. Schneidewind, "Analysis of Error Processes in Computer Software”, Proceedings of the International Conference
on Reliable Software, IEEE Computer Society, 21-23 April 1975, pp. 337-346.

[17] Nozer D. Singpurwalla, "Determining an Optimal Time Interval for Testing and Debugging Software", IEEE Transactions
on Software Engineering, Vol. 17, No. 4, April 1991, pp. 313-319.

[18] Jeffrey M. Voas and Keith W. Miller, " Software Testability: The New Verification”, IEEE Software, Vol. 12, No. 3, May 1995,
pp. 17-28.

[19] Webster's New Universal Unabridged Dictionary, Second Edition, Simon and Shuster, New Y ork, 1979.

[20] Elaine J. Weyuker, "Using the Consequences of Failures for Testing and Reliability Assessment”, Proceedings of the Third
ACM S GSOFT Symposium on the Foundations of Software Engineering, Washington, D.C., October 10-13, 1995, pp. 81-91.

34

Start Test End Test, Begin Mission End Mission
A.
t,
r(t)<r.
End Test
Start Test Continue Test Begin Mission End Mission
B.
t, t
r(t)$r. r(t)<r.
Figure 1. Remaining Failures Criterion Scenario
Start Test End Test, Begin Mission End Mission
A. J l J
t 1
Te(t)
End Test
Start Test Continue Test Begin Mission End Mission
t(t(” tm4>

Tet) —» Tt 5

Figure 2. Timeto Next Failure Criterion Scenario

35

Risk Criteria Levels

rC tm
Risk
tt, —— .
Total Test Time Reductlon

_— r(tl)
_ TF(tI)

Reliability Measures

Figure3. Risk Reduction Process

7.3

3.3

UNSAFE
r(t)>re

RCM for Remaining Failures (r.=1)

0.7 SAFE r‘(t‘)<rC ‘ ‘ ‘
18 335 49 64.5 80

Total Test Time (30 Day Intervals)

Figure 4. RCM for Remaining Failures, OID

36

7 UNSAFE T.(t)<t,
o Te(t)=ty
L
‘_.E
g 13-
2 - SAFE T(t)>t,,
«
b t,=8 days
*
z
e -33-
-]
E
b=
2 53
=
[8)
©
-73-
| | | | | | |
20 24 28 32 36 40 44

Total Test Time (30 Day Intervals)

Figure 5. RCM for Time to Next Failure, OIC

Time t,

Interval 1 sls i t

Failures Xo1 Xt

X,

it current interval

s. startinginterval for using observed failure datain parameter estimation
t: the last interval of observed failure data

t;: total test time

X,1: observed failure count in therange [1,s-1]
X, Observed failure count in therange [st]

X observed failure count in the range [1,t]

Figure 6. Failure Count Interval Relationships

Figure

Operational Quality

Parameter Estimation Range: 1-18,s=9

160 [~ 15 v
- + i .
@ r ot 1 P
«© L 7 E o
2 I .] 5
° r(t).’ 14 =

L) |
c 120 ,] L
= n
-]
: e
a 13 -
o 1 £
2 80 1]
; o
] 72 g
£] .
; -
- 40 1
[
o 1t 2
-] 13
- i E}
.g] z
[l L I R R B B A

0 0.1 0.2 0.3 0.4 0.5

Fraction Remaining Failures (p)

7. Total Test Time & Remaining Failures

vs. Fraction Remaining Failures, OIA

1.0 —

0.918—

0.836—

0.754—

0.672—

Total Test Time (30 Day Intervals)

Figure 8. Operational Quality vs.Total Test Time, OIA

37

%\ Failure1 Feilure6

£ \

g Actual \ Predicted

> \

o 34 \

2 \

o \
\

= \

< \

- \

8

@

£

0
= Failure2 Failure4 Failure 7

Failure3 Failure5
——t

Ittt ¢
1234567 89101112131415161718192021

Execution Time (30 Day Intervals)

Figure9. Timeto Next Failurevs. Execution Time, OIA

150~

Time to Next N Failures (30 Day Intervals)

0 1 2 3 4 5
Reduction in Remaining Failures

Figure 10. Timeto Next N Failuresvs. Reduction in
Remaining Failures, OIA

38

Reduction in Remaining Failures

ol /p=-40r=47

0

Figure 11. Reduction in Remaining Failuresvs. Timeto Next N

L L L
10 20 30 40

Time to Next N Failures (30 Day Intervals)

Failures, OIA
5
4
2 3
=
= . - -
£ r=Remaining Failures
=2 t.=Total Test Time Until Launch
o
1 EXAMPLE;
(i=.6, t,=52)
oL
0 40 80 120 160

Total Test Time (30 Day I ntervals)

Figure 12. Launch Decision: Remaining Failures vs. Total Test

Time, OIA

39

