Predicting Deviationsin Software Quality by Using
Relative Critical Value Deviation Metrics

Norman F. Schneidewind, Ph.D.
Division d Computer and Information
Sciences and Operations
Naval Postgraduate Schod
Monterey, CA 93943
Email: nschneid@nps.navy.mil

Abstract

We devdop anew metric, Relative Critical Value De-
viation (RCVD), for clasdfying ard predicting software
qudity. The RCVD is based on the amncept that the extent
to which a metric's value deviates from its critical value,
normalized by the scale of the metric, indicates the degree
to which the item being measured dces not conform to a
spedfied nam. For example, the deviation in body tem-
perature above 98.6 Fahrenheit degreesis a surrogate for
feve. Smilarly, the RCVD is a surrogate for the exent to
which the qudity of software deviates from acceptable
norms (e.g., zero dscreparcy reports). Early in devdop-
ment, surrogae metrics are needed to make predictions of
qudity before quality data are available. The RCVD can
be ommputed for a single metric or multiple metrics. Its
apgication is in asessng newly devdoped modules by
their qudity in the absence of quality data. The RCVD isa
part of the larger framework of our measurement models
that include the use of Boolean Discriminart Functions
for classfying software qudlity. We demonstrate our con-
ceptsusing Spae Shuttle flight software data.

Keywords: Quality dassification andprediction, relative
critical value deviation metrics.

1. Introduction

Our goal is to provide models and processes to assst
software managers in answering the following questions:

e How can | control the quality of my software?

* How can | predict the quality of my software?

* How shall | prioritizemy effort to achieve my quality
goals?

e How can | determine whether my quality goals are
being met?

e How much will it cost to achieve my quality goals?

We develop quality control and prediction models that are
used to identify modules requiring priority attention dur-

Allen P. Nikora, Ph.D.

Jet Propusion Laboratory
Cdlifornia Institute of Techndogy
Pasadena, CA 911098099
Email: Allen.P.Nikora@jpl.nasa.gov

ing development and maintenance. This is acampli shed
in two adivities: validation and application. During vali-
dation, we use abuild dof the software that has been devel-
oped as the source of data to compute Boolean Discrimi-
nant Functions (BDFs), Relative Criticad Value Deviation
(RCVD) metrics, and regresson equations that we use to
retrospedively classfy and predict quality with spedfied
acairagy, by build and module. Using these functions and
equations during application, we dassfy and predict the
quality of new software that is being developed. This is
the quality we eped to achieve during maintenance
During validation, both quality factor (e.g., discrepancy
reports of deviations between requirements and imple-
mentation) and software metrics (e.g., Size, structural) data
are available; during application, only the latter are avail-
able. During validation, we @nstruct Boolean discrimi-
nant functions (BDFs) comprised of a set of metrics and
their criticd values (i.e., threshalds) [1, 2]. We seled the
best BDF based on its ability to achieve the maximum
relative incremental quality/cost ratio. During appli cation,
if a least one of the module's metrics has a value that ex-
cedls its criticd value, the module is identified as "high
priority" (i.e., low quality); otherwise, it is identified as
"low priority" (i.e., high quality). Our objedive isto iden-
tify and corred quality problems during development, as
oppcsed to waiting until maintenance when the st of
corredion would be high. This process addresses the
question: "How can | control the quality of my software?'
Becaise BDFs only provide an accept/rejed dedsion on
modue quality, during validation, we dso construct
RCVDs that are used to prioritize the dfort applied to
rejeced modules. In ather words, an RCVD measures the
degreeto which quality islow. This processaddresses the
question: "How shall | prioritize my effort to achieve my
quality goals?

A RCVD isaderived metric, based onthe normalized
deviation between a metric's value and its criticd value. It
may be based on a single or multiple metrics. In ou proc-
ess we: 1) identify the criticd values of the metrics and 2)
find the optimal BDF and RCVD based ontheir ahility to

satisfy bath statistical and application criteria. Statistica
criteriarefer to the adility to corredly classfy the software
(i.e., clasdfy high quality software & high quality and low
quality software & low quality). Application criteria refer
to the avility to achieve ahigh quality/cost ratio. This pro-
cess addreses the questions: "How can | determine
whether my quality goals are being met?" and "How much
will it cost to achieve my quality goals?'

RCVD values that excealed the .80 percentile value
were ale to acount for two-thirds of the discrepancy
reports. To round ou our approach, we use regresson
equations to predict quality limits. This is desirable be-
cause, athough BDFs and RCVDs control and predict
quality based on expeded values, they are not capable of
predicting the range of quality values.

We show that it is important to perform a marginal
analysis (i.e., identification of the incremental contribution
of eat metric to improving quality) when making a dea-
sion abou how many metrics to include in the BDFs and
RCVDs. If many metrics are added to the set at once, the
contribution of individual metrics is obscured. Also, the
marginal analysis provides an effedive rule for dedding
when to stop adding metrics.

The contributions of this reseach are the following: 1)
the Relative Criticd Value Deviation (RCVD) is a new
metric for classfying and predicting software quality; 2)
the RCVDs in combination with the BDFs we previously
developed, alow the software manager to both control
quality and prioritize the eff ort required to achieve quality
gods, 3) BDFs, RCVDs, and regresson egquations are
integrated into a processto assst the software manager in
answering the questions posed in the introduction; and 4)
the data and most of the cdculations are implemented in a
spreadshed for easy transfer to praditioners.

1.1 Related Research

Our models are in the dassof models concerned with
the dassfication, control, and prediction o quality. Other
reseachers have had similar objedives but different ap-
proaches. Porter and Selby used classficaion trees to par-
tition multiple metric value space so that a sequence of
metrics and their criticd values could be identified that
were as0ciated with either high quality or low quality
software [3]. This technique is closely related to our ap-
proach of identifying a set of metrics and their criticd
values that will satisfy quality and cost criteria. However,
we use statisticd analysis to make the identification.

Briand et al. used logistic regresson to classfy mod-
ules as fault-prone or not fault-prone a a function of vari-
ous objed oriented metrics [4]. In ancther example of
logistic regresson, Khaoshgoftaa and Allen used it to clas-
sify modues as fault-prone or not fault-prone & a function
of faults, requirements, performance, and documentation
software troule report metrics [5]. While one of our ob-
jedivesis smilar -- classfy modues as either high quality
or low quality -- we derive from this binary classfication

several predictive continuous quality and cost metrics,
including the RCVDs. These metrics are used to predict
the quality of software that will be delivered by develop-
ment to maintenance and the st of achievingit.

Khoshgdtaar et a. used nanparametric discriminant
anaysis in ead iteration d a military system projed to
predict fault-prone modules in the next iteration [6]. This
approach provided ealy indicaion of reliability and the
risk of implementing the next iteration. They conducted a
similar study involving a telecommunications applicaion,
again using naparametric discriminant analysis, to clas-
sify modues as either fault-prone or not fault-prone [7].
Our approach has the same objedive but we produce
BDFs and RCVDs in terms of the original metrics as op-
posed to using density functions as discriminators.

Khoshgdtaa and Allen have dso developed models
for ranking modules for reliability improvement acording
to their degree of fault-proneness as oppased to whether
they are fault-prone or not [8]. They used Alberg Dia
grams [9] that predict percentage of faults as a function of
percentage of modules by ordering moduesin deaeasing
order of faults and noting the cumulative number of faults
corresponding to various percentages of modues. Our
approach is smilar but we acomplish the same objedive
by sorting the modules by RCVD and finding its percen-
tile distribution and the correspondng drcount percentile
distribution, aswe explain later.

2. Discriminative Power M odel

2.1. Discriminative Power Validation

Using ou metrics validation methodology [10, 11],
and the Space Shutle flight software metrics and dscrep-
ancy reports (DRs), we validate metrics with resped to the
quality fador drcourt. This is the number of discrepancy
reports written against a modue. In brief, this involves
conducting statisticd tests to determine whether thereis a
high degree of association between drcount and candidate
metrics. As $own in Figure 1, we validate metrics on
Build 1 (1397 modues) and apply them to Build 2 (846
modues) of the Space Shitle flight software. Nikora and
Munson argue for the neal of a measurement baseline
against which evolving systems may be compared [12].
Our baseline is Build 1in Figure 1. The measurement re-
sults from Build 1 povide the data source for controlling
and predicting the quality delivered to maintenance and
for comparing predicted with adual quality, once the latter
isknown. Next, we define Discriminative Power.

2.1.1. Discriminative Power

Given the dements M; of a matrix of n modules and
m metrics (i.e., nm metric values), the dements MCj of a
vedor of m metric aiticd values, the dements F, of a
vedor of n quality fador values, and scdar FC of quality

factor criticd value, M, must be ale to discriminate with
resped to F, for aspedfied FC, as srown below:
M;>M; - F,>FC andM; <M, « F SFC (@D}

fori=1,2,..,n, and j=1,2,...,m with spedfied a, where a is
the significance level of various dtatisticd tests that are
used for estimating the degree to which a set of metrics
can corredly classfy software quality. In ather words, do
the indicaed metric relations imply corresponding quality
factor relationsin (1)? This criterion assesses whether MC,
has sufficient Discriminative Power to be cgable of dis-
tingushing a set of high quality modues from a set of low
quality modules. If so, we use the aiticd valuesin Quality
Control and Prediction described below. The validation
processis ill ustrated in Figure 1, where the aiticd values
MC, are produced during the Test phase of Build 1 by us-
ing the metrics M, from the Design prese and the quality
fador F, (eg., drcourt) available in the Test phase. (Dis-
crepancy Reports are written against the software
throughou development but they are not significantly
complete until the end of the Test phase during which
failures are observed). The desired quality level is st by
the choice of FC. The lower its value, the higher the
quality requirement; conversely, the higher its value, the
lower the requirement. A value of zero is appropriate for
safety-criticd systems like the Space Shuttle.

2.2. Relative Critical Value Deviation (RCVD)
Metric

The RCVD is based onthe concept that the extent to
which a metric's value deviates from its criticd value,
normalized bythe scde of the metric, isan indicaor of the
degree to which the entity being measured dces not con-
form to a spedfied norm. For example, the extent to which
body temperature exceals 98.6 degrees Fahrenheit is an
indicaor of the deviation from an established nam of
human hedth. Measurement invalves using surrogates. the
deviation in temperature above 98.6 degrees is a surrogate
for fever. Similarly, the RCVD is a surrogate for the e-
tent that software quality deviates from acceptable norms
(e.g., zero discrepancy reports). The concept of the RCVD
is daown in Figure 2, where the metric and quality scdes
are shown, defined by the maximum (MX; and minimum
(MN,) metric boundaries and the maximum (FX) and
minimum (FN) quality boundaries, respedively. The the-
ory of the RCVD isgiven bythefoll owing relation:

RCVD; =
M, -mMc,) Mx ,-MN)~ (F-Fc Y(Ex -rn) @

This means that the deviation of a metric from its
criticd value, normalized by metric length, is related to
the degree of quality, as represented by the normalized
deviation of a quality fador (e.g., drcount) from its criti-
cd values. increasing paitive deviations are related to
deaeasing quality and increasing regative deviations are
related to increasing quality. It should na be inferred that

the relationship is linea or proportional; in fad, it is non-
linea. In the idedized diagram in Figure 2, the worst
quality correspondsto MX; and FX, the best quality toMN,
and FN, and aceeptable quality to MC, and FC. Also, Fig-
ure 2 dees not indicae the mathematica form of F. If FN
is equal to zero and F, is st equa to zero, which is fre-
quently the cae, F, and FX can be replacel by the sum of
the quality fadtor acoss a set of modues and the total
quality fador, respedively. This quantity is the proportion
of drcount computed aaossa set of modules. An RCVD
can also be oomprised of multiple metrics by computing
their mean. Note that athough it would na be valid to
compute the mean of metrics, the mean of RCVDs is an-
other story since these ae normalized dmensionless
quantities. We experimented with bah single and multiple
metric RCVDs, aswe explain later.

2.3. Quality Control and Prediction

Quality control is the evaluation of modules with re-
sped to predetermined criticd values of metrics. The pur-
pose of quality control is identify software that does not
med quality requirements ealy in the development proc-
ess ® corredive adion can be taken when the cost is low.
Quality control is applied during the Design plese of
Build 2in Figure 1 to flag software for detail ed inspedion
that is below quality limits. The validated BDFs, com-
prised of the metrics M and their criticd values MC, that
are obtained from Build 1, are used to either accet or
rejed the modules of Build 2 [1, 2]. At this point during
the development of Build 2, only the metric data M, and
MC, are available. The validated RCVDs are used to pri-
oritize the atention and effort devoted to modules that are
rejeded bythe BDFs. Details are given later.

Quiality predictions are used by the developer to antici-
pate rather than read to quality problems. Figure 1 shows
the metrics controlling and predicting the quality of soft-
ware that will be delivered to maintenance early in the
development of Build 2 Accompanied by rigorous in-
spedion and test, this process will result in improved
quality of Build 2 and the software that is released to
maintenance. Once dl of the quality fador data F, (e.g.,
drcount) have been colleded for Build 2, at the end of the
Test phase & own in Figure 1, the quality of Build 2
would be known. This, then, becomes the a¢ual quality of
Build 2 in the maintained software. Regresson equations
F=f(M,) are developed duing the Test phase of Build 1
and applied to predicting quality limits during the Design
Phase of Build 2, as snown in Figure 1. This process ad-
dresses the question: "How can | predict the quality of my
software?

3. Validation M ethodology

We use afive stage processto seled metrics and met-
ric functions for quality control and prediction: 1) com-

pute aiticd values of the candidate metrics; 2) for the set
of candidate metrics and criticd values, find the optimal
BDF based onstatistical and application criteria; 3) apply
a stopping rule for adding metrics; 4) identify the best
RCVD for prioritizing quelity asaurance dfort; and 5
develop a regresson equation that will acarately predict
quality limits (e.g., limits of drcount). Table 1 provides a
functional description of ead stage. The five stages take
placeduring the Test Phase of Build 1 of Figure 1, once
al the qudity fador data F, (e.g., drcourt) are available.
The next sedions describe the analysis for each stage.

3.1. Stage 1: Compute Critical Values

Criticd values MC, are computed based on the Kol-
mogaov-Smirnov (K-S) test [1, 2]. Table 1 shows the
metric definitions, criticd values MC, and K-S distances
for six metrics of Build 1 These metrics were seleded
based on their relatively high K-S distance @mpared to
other metrics that had been coll eded on the Space Shuttle.
The test statistic is the maximum verticd difference be-
tween the CDFs of two complementary sets of data (e.g.,
the CDFs of M, for drcount<FC and drcount>FC). If the
difference is sgnificant (i.e., a<.009), the value of M,
corresponding to maximum CDF difference is used for
MC,. This relationship is expressed in equation (3). Met-
rics are alded to the BDF in order of their K-S Distance

K -s(mc)=
malcor (v./(F < Fc)]-lcor (v, /(> Fc)b ©

3.2. Stage 2: Form a Set of Boolean Discriminate
Functions (BDFs)

For ead BDF identified in Stage 1 we use Table 2 to
further evaluate the ability of the functions to discriminate
high quality from low quality, from both statisticd (e.g.,
misclassificaion rates) and applicaion (e.g., ability of the
metric set to corredly classfy low quality modules)
standpdnts. In Table 2, MC, and FC classfy modues into
one of four categories. The left column contains modules
where none of the metrics exceals its criticd value; this
condtion is expressed with a Bodean AND function of
the metrics. This is the ACCEPT column, meaning that
acording to the dassficaion dedsion made by the met-
rics, these modues have accetable quality. The right col-
umn contains modules where & least one metric exceeds
its criticd value; this condtionis expressed by a Bodean
OR function d the metrics. This is the REJECT column,
meaning that according to the clasdficaion dedsion made
by the metrics, these modues have unacaptable quality.
The top row contains modues that are high quality; these
modues have a quality fador that does not exced its
criticd value (e.g., drcount=0). The bottom row contains
modues that are low quality; these modules have a quality
fador that exceedsits criticd value (e.g., drcount>0).

Equation (4) gives the dgorithms for making the cdl
courts, using the BDFs of F, and M, that are caculated
over the n modules for m metrics. This equation is an im-
plementation of the relation givenin (1).

n
Cu=COUNT FOR ((F < FC)O(Mi1 < MCy)...0(M; £ MC))--.0(Mim< MCwm)

Ciz= COUNT FOR ((F < FC)I(M> M) T(M; > M) I(Me > MCr)
i 4

Cau= coleNT FOR ((F, > FC) O(Mi1 < MCY--0(M; £ MC))---0(Min < MCw)

Co= COE{NT FOR ((F, > FC) O((Mis > MCy)...0(M; > MC))-..0(Min > MCi)))

for j=1,...,m, and where COUNT (i)=COUNT(i-1)+1 FOR
Bodean expresson true and COUNT(i)=COUNT(i-1),
otherwise; COUNT(0)=0. The counts (C,,, C,, C,,, and
C,,) correspond to the cdls of Table 2, where row and
column totals are dso shown: n, n, n,, N,, and N,.

In addition to counting modules in Table 2, we must
also court the quality fador (e.g., drcount) that is incor-
redly classfied. Thisis siown as Remaining Fador, RF,
in the ACCEPT column. Thisisthe quality fador court on
modues that shoud have been rejeded. Also shown is
Total Fador, TF, the total quality fadtor court on all the
modues in the build. Table 2 and subsequent equations
show an example validation, where the combination of
metrics from Table 1 and their criticd valuesfor Build 1is
prologwe size (P) with a aiticd value of 63, statements
(S) with a aiticd value of 27, and eta2 (E2) with a critica
value of 45. This is the optimal BDF. Later we will ex-
plain hov we arived at this particular combination o
metrics as the optimal set. The results of the following
cdculations for the optimal BDF are shown in Table 3.

3.2.1. Statistical Criteria

We validate aBDF statisticdly by demonstrating that
it partitions Table 2 so that C,, and C,, are large relative to
C, and C,,. If this is the cae, a large number of high
quality modules (e.g., modules with drcourt=0) would
have M;;<MC; and would be crredly classfied as high
quality. Similarly, a large number of low quality modules
(e.g., modues with drcount>0) would have M;>MC, and
would be corredly clasdfied as low quality. We evaluate
partitioning ability using the misclassfication rates.

3.2.2. Misclassification

We compute the degree of misclasdfication in Table
2 by nating that idedly C,=n=N, C,=0, C,=0,
C,=n,=N,. The extent to which thisis not the cae is esti-
mated by Type 1 misclassfications (i.e., the module has
Low Quality and the metrics "say" it has High Quality)
and Type 2 misclassficaions (i.e., the modue has High
Quality and the metrics "say" it has Low Quality). Thus,
we define the foll owing measures of misclassfication:

Proportionof Typel: p, = C,/n 5
For the example p, = (35/1397)* 100= 2.51%)

Proportionof Type2: p,=C,/n (6)
For theexamplep, = (344/1397)*100= 24.62%

3.2.3. Application Criteria

Because it is the performance of the metricsin the g-
plication context that courts, we dso validate metrics with
resped to the gplicdion criteria Quality and Inspedion,
which are related to quality achieved and the cost to
adiieve it, respedively [1, 2]. During the Design plese of
Build 2in Figure 1, we predict that the quality computed
by equations (7)--(9) will be delivered to maintenance,
asuming that the modules rejeded by the quality control
processare inspeded and tested and that the problems that
are found are correded. Furthermore, we predict that the
degree of inspedion computed by equation (10) will be
required to achieve this quality. In addition to controlli ng
and predicting quality, equations (7)--(9) can be used to
address the question: "How can | determine whether my
quality goals are being met?' For example, if a quality
goal is <3% residual defeds, the achievement of this goal
can be measured by RFP -- equation (9). Also, the degree
of rigorous inspedion -- equation (10) can be used to ad-
dressthe question: "How much will it cost to achieve my
quality goals?'

3.2.4. Quality

First, we etimate the metrics ability to corredly
classfy quality, given that the quality is known to be low:
LQC: proportionof low quality (e.g.,drcount>0)
softwarecorrectlyclassified= C,,/n, (7)

For the example, LQC=(541/576)*100=93.92%.

Sewmnd we estimate the metrics' ability to corredly
classfy quality, given that the BDF has classfied modues
as ACCEPT. Thisisdore by summing quality fador in the
ACCEPT column in Table 2 to produce Remaining Fador,
RF (e.g., remaining drcount), given by equation (8).

RF:ZF‘ FOR((F, > FC)O(M:. < Mcl)...D’ ©)

(M; £MC)---O0(Min <MCw))

for j=1,...m. Thisisthe sum of F, (e.g., drcount) on mod-
ules incorredly classfied as high quity because, for
these modues, (F>FC)O(M;j<MC).

We etimate the propation of RF by equation (9),
where TF isthetotal F, for the build.

RFP= RF/TF (9)
For the example, from Table 2 there are 56 DRs on 35
modues that are incorredly clasdfied (i.e,, RF=56). The

total number of DRs for the 1397 moduesis 2579. There-
fore, RFP=(56/2579)*100=2.17%.

3.2.5. Inspection

Inspedion is one of the costs of high quality. We ae
interested in weighing inspedion reguirements (i.e., per-
cent of modues rejeded and subjeded to detail ed inspec-
tion) against the qudlity that is adhieved, for various
BDFs. We estimate inspedion requirements by noting that
all modues in the REJECT column of Table 2 must be
inspeded; thisisthe wunt C +C,,. Thus, the propartion of
modues that must be inspeaed is given by:

I :(C12+C22) n (20

For the example, 1=((344+541)/1397)* 100=63.35% and
the percentage accepted is 1-1 = 36.65%.

3.2.6. Summary of Validation Results

Table 3 summarizes the results of the validation ex-
ample. The properties of dominance and concordance are
evident in these validation results and in other data we
have analyzed from the Space Shuttle. That is, a paint is
readed in adding metrics where Discriminative Power is
not increased because: 1) the aontribution of the dominant
metrics in corredly classfying quality has arealy taken
effed and 2 additional metrics essntialy replicae the
clasdficadion results of the dominant metrics -- the con-
cordarce effed. This result is due to the property of the
BDF used as an OR function, causing a module to be re-
jeded if only onre of its metrics exceels its criticd value.

3.3. Stage 3: Apply a Stopping Rulefor Adding
Metrics

It isimportant to strike abalance between quality and
cost (i.e., between RFP and I). Thus we ald metrics urtil
the ratio of the relative change in RFP to the relative
change in | is maximum, as given by the Quality Inspec-
tion Ratio in equation (11), where i refers to the previous
RFPandI:

QIR = (aRFR/RFR)/(a1/1) (11)

For the example, QIR(P,S-P,S, E2)= ((0.2.17-
2.9501)/2.95)/((63.35-60.13)/60.13)=4.91. Therefore, we
stop adding metrics after eta2 (E2) has been added.

3.3.1. Comparison of BDF Validation with Applica-
tion Results

In order to compare validation with applicaion re-
sults, we first show how BDF Table looks in the Design
phase of Build 2 in Figure 1, when orly the metrics M,
and their criticd values MC, are available. This is sown
in Table 4, where the "?" indicaes that the quality fador
data F, are not available when the validated metrics are
used in the quality control function o Build 2 During the
Design plese of Build 2, modules are dassfied acording

to the aiteria that have been described. Whereas 36.65%
(512/1397) and 63.35% (885/1397) modules were a-
cepted and rejeded, respedively, during Build 1 (see Ta
ble 2), 26.95% (228/846) and 73.05 % (618846) modules
were acceted and rejeded, respedively, during Build 2
(seeTable 4). The rejeded modues would be given prior-
ity attention (i.e., subjeded to rigorous inspection).

A comparison d the Validation (Build 1) with the Ap-
plicaion (Build 2) with resped to statistica and applica-
tion criteria ae shown in Table 5. To have a basis for
comparison with the validation results, we computed the
values srown in Table 5 retrospedively (i.e., after Build 2
was far enough alongto be @leto collea all of the quality
fador data a the conclusion of the Test phase). The values
for Build 2 are the adual quality delivered to maintenance,
as shown duing the Test phase of Figure 1. The results of
the two bulds are comparable. Note that the same critica
values computed during Build 1 were used on Build 2.
This procedure is necessary because the quality fador data
that isused in the K-S test in Stage 1 is not avail able dur-
ing the Design Phase of Build 2in Figure 1. This transfer-
ability of model parameters is key to our process becaise
the point of validation is to apply its results to ather but
similar software when the quality fador data is not avail-
able for the latter. Also, we have found that to apply this
approach, Build 2 does nat have to be adired descendant
of Build 1 Builds 1 and 2do nat have this relationship.

3.4. Stage 4: Form a Set of Relative Critical
Value Metrics (RCVD)

Granularity of data is an isaue that does nat sean to
have been discussed much in the literature but one that we
have found to be of grea importance in metrics analysis.
By granularity we refer to the level of data (e.g., module,
modue sets, build) that will yield useful results when the
data ae used in amodel. Thiswas anissiein ou reseach
to develop an RCVD suitable for use & a second level
discriminant in controlling and predicting quality. By sec-
ond level we mean that the RCVD comes into play after
the optimal BDF has dore its job d either acepting or
rejeding a module. Although the BDF is very useful, it
does nat indicate the degree of qudity (e.g., number of
DRs) onarejeded module or set of rejeded modues. Our
origina objedive was to provide discrimination at the
modue level (i.e, rank the drcount in modules by
RCVD). Due to the large number of modules with zero
DRs (58.77% and 5059% for Build 1 and Build 2, re-
spedively) and the large variability of the data, this did
not prove feasible. However, by sorting the modules by
RCVD and finding its percentile distribution and the cor-
respondng drcount percentile distribution, we were able
to identify key points in the plots of these distributions.
We cdl these points break paints. These ae pointsin the
percentile distributions where the slope of the percentile
curve starts to increase sharply. An example is shown in

Figure 3, where percentile drcourt is plotted against per-
centile prologue size. A bre& poaint occurs at .80 percen-
tile (80%) on the X-axis. This corresponds to RCVD
(prologue size)=0.517. This value corresponds to a Y-axis
value of .35 (35%). Thus for values of RCVD greaer than
.0517, we estimate that the RCVD would identify 65% of
the drcourt. Thus we seethat a difference of only .20 per-
centile (1.00-.80) of the RCVD acmurts for a difference
in .65 percentile (1.00-.35) of the drcount. In order to im-
plement this process we validate function (12) for sets of
metrics during the Test Phase of Build 2, in Figure 1,
when the quality fador data F, are avail able. Then we g-
ply function (12) during the Design Phase of Build 2
when noqudlity fador date is avail able for Build 2.
0(m; >Mc;)ORCVD, (12)

This means that in addition to rejeding modules -- the
function performed by the BDF -- there is further classfi-
cdion performed by the RCVD. Any modues that evalu-
ate to truein (12), would receve spedal attention becaise
the likelihood is that they would contain multiple DRs.
Thisisillustrated in Table 6 where 65.37% of the drcourt
is identified by RCVD (prologue size) in combination
with the BDF on Build 1, corresponding to a drcount den-
sity of 6.08. This is in contrast with a density of .80 on
modues where (12) does not evaluate to true and 285
when the BDF alone is used. Similar results are observed
for Build 2 in Table 6. These results indicate the quality
that would be delivered to maintenance unless adion is
taken in inspedion and test to corred the defeds.

We experimented with using all six metrics of Table 1
in the RCVD. We used al six in order to have sufficient
data to make the computation feasible. RCvD was worse
than RCVD (prologue size), as can be seen in Table 6, in
terms of both percentage of drcount classfied and drcount
density. Since RCVD (prologule size) is much easier to
compute, it was the preferred RCVD to apply to Build 2,
as shown in Table 6. This result is due to the dominance
and concordance properties of metrics mentioned earlier.
In addition, the result is due to the fad that prologue size
contains a thorough change history comprised o the fol-
lowing ndations in the program listing: modue; purpose
of the modue; spedficaion reference change request;
discrepancy report; release; release date; revision level;
programmer; description of change; listing d statements
affeded by the change; indicaion of whether a statement
is added, deleted, or changed; and rogram comments. We
use prologue size as a predictor of drcount in the aggre-
gate (i.e., the aumulative quantity of entries in the pro-
gram), nat on a one-for-one basis of a thange possbly
resultingin aDR.

A seamingly trivial but yet important asped of this
stage of the analysis was demonstrating the usefulness of
sorting dbta to examine their distributions and the flexibil-
ity for doing this provided by a spreadshed program.

3.5. Stage5: Identify Quality Limit Predictors

The final stage of the analysis invalves identifying
regresson equations for predicting the average and limits
of quality (e.g., drcount) of module sets, F=f(M,), during
the Test Phase of Build 1, as shown in Figure 1. This pro-
cessis desirable becaise BDFs and RCVDs are not cgpa
ble of predicting quality limits. During the Test phase of
Build 1, regresson coefficients are estimated and the re-
sultant equation is applied, during the Design Phase of
Build 2 to predict the quality limits that would be deliv-
ered to maintenance unless adion is taken to corred the
defeds. Asinthe cae of forming the RCVDs, granularity
of data was an isale. Again, because of the large number
of modules with zero drcourt and the large variability of
the data, prediction at the individual module level was not
feasible. However, applying our ealier regresson work
for the Space Shutle [13], where we found that if we di-
vided the data into the appropriate number of frequency
classs (i.e.,, modues «ts), acording to Sturges rule [14],
usable regresson equations could be developed based on
the averages computed for the dasss. In that work, we
only predicted average values. We now extend the a-
proach to include predicting quelity limits. We experi-
mented with various ts of predictor variables. The model
results are shown in Table 7. The equation we seleded is
the exponential function wsing average statements (ave S):

avedrcount exp(0.1137+0.0056697 aved (13)

This equation was sleded for application to Build 2 for
the following reasons: 1) lowest Mean Square Error
(MSE) in Table 7; 2) fair acairacy in predicting Build 1
drcourt; 3) theoreticd consideration that the rate of
change of drcount with module size would vary with
modue size (property of exponential distribution); and the
relative eae of colleding size data. Although the F-ratio
and R? are impressve for the linear function using nodes,
this equation has a relatively high MSE and the colledion
of nodes requires the use of ametrics analyzer.

Prediction results are shown in Figures 4 -- 7. The
figures ow the following for average drcount for sets of
100 modues (1 -- 100, 101 -- 200, etc.): Figure 4, acual
and predicted values for Build 1; Figure 5, adual and pre-
dicted limits for Build 1; Figure 6, adua and predicted
values for Build 2; and Figure 7, adual and predicted
limits for Build 2 Figure 7 shows that the prediction lim-
its bracket the adual values for Build 2. This is another
example of retrospedive analysis. once the quality fador
data F, are avail able during the Test Phase of Build 2, Fig-
ure 1, the adual drcount can be compared with the predic-
tions. In the applicaion of the prediction equation, the
software manager would compute the average size of sets
of modules and pedict the drcount and the limits of
drcourt for ead module set, as srown in Figures 6 and 7,
respectively.

4. Summary and Conclusions

We developed a new metric, Relative Criticd Value
Deviation (RCVD), for classfying and predicting software
quality. When the granularity of data was considered, the
RCVD proved to be auseful indicator of the degree to
which software quality deviates from a spedfied norm.
We discovered that the major application o the RCVD
was to prioritize the dfort required to achieve quality
goals. At the outset we posed several questions that the
software manager wants answered concerning software
quality. We provided an integrated set of models based on
Bodean dscriminant functions, RCVDs, and regresson
equations to addressthese questions. We made athorough
evaluation of two builds - one was used for validation and
the other for applicaion -- using a five-stage analysis ap-
proach. In the three aeas of our modeling effort, the pre-
dictions for the application buld were dose to the ac¢ual
values. Based onthese preliminary results and the fad that
we have done analysis on additional Space Shitle data,
we fed that the models, not the spedfic numericd results,
are transferable to other organizations, if the models are
applied within and na across application domains. How-
ever, to increase our corfidence in the results, in future
reseach we will examine severa additional builds of the
Spae Shuttle flight software. Finally, we found that mun-
dane aspeds of the analysis like data sorting to discover
information about distributions of data and the use of
spreadshed cdculations sgnificantly aided the analysis.

5. Acknowledgments

Theresearch described in this paper was carried ou at
the Naval Postgraduate School and the Jet Propusion
Laboratory, Cdlifornia Institute of Technology. We wish
to adknowledge the support provided for this projed by
Dr. Willi am Farr of the Naval Surface Warfare Center and
the National Aeronautics and Space Administration’'s
IV&V Fadlity; the data provided by Prof. JohnMunson o
the University of 1daho; the data and asdstance provided
by Ms. Julie Barnard of United Space Alliance and the
helpful comments of Dr. Linda Rosenberg of NASA’s
Goddard SpaceFlight Center.

6. References

[1] Norman F. Schneidewind, “ A Software Metrics Model for
Quality Control”, Proceadings of the International Metrics
Sympasium, Albugquerque, New Mexico, November 7,
1997, pp. 127-136.

[2] Norman F. Schneidewind, “A Software Metrics Model for
Integrating Quality Control and Prediction”, Proceedings
of the International Symposium on Software Reliability
Engineaing, Albuquerque, New Mexico, November 4,
1997, pp. 402-415.

(3]

(4]

(5]

(6]

(8]

A. A. Porter and R. W. Selby, "Empiricdly Guided Soft-
ware Development Using Metric-Based Clasdfication
Trees', IEEE Software, Vol. 7, No. 2, March 1990, pp. 46-
54.

Lionel C. Briand, John Daly, Victor Porter, and Jirgen
Wist, "Predicting Fault-Prone Classes with Design Meas-
ures in Objed-Oriented Systems', Procealings of the
Ninth International Symposium on Software Réliability
Engineaing, Paderborn, Germany, November 4-7, 1998,
pp. 334-343.

Taghi M. Khoshgoftaa and Edward B. Allen. "Logistic
Regresson Modeling o Software Quality", Department of
Computer Science & Engineaing, Florida Atlantic Univer-
sity, TR-CSE-97-24, March, 1997.

Taghi M. Khoshgoftaa, Edward B. Allen, Robert Hal-
stead, and Gary P. Trio, "Detedion of Fault-Prone Soft-
ware Modues During a Spiral Life Cycle", Procealings of
the International Conference on Software Maintenance,
Monterey, California, November 4-8, 1996, pp. 69-76.
Taghi. M. Khoshgoftaa, Edward B. Allen, Kaa Ka
laichelvan, and Nishith Godl, "Early Quality Prediction: A
case Study in Teleoommunicaions', IEEE Software, Vol.
13, No. 1, January 1996, pp. 65-71.

Taghi M. Khoshgoftaa and Edward B. Allen, "Predicting
the Order of Fault-Prone Modules in Legacy Software”,
Procealings of the Ninth International Symposium on
Software Reliability Engineaing, Paderborn, Germany,
November 4-7, 1998, pp. 344-353.

(9]

(10

(11

(12

(13

(14]

Niclas Ohlsson and Hans Alberg, "Predicting Fault-Prone
Software Modules in Telephone Switches', |IEEE Transac-
tions on Software Engineeing, Vol. 22, No. 12, Decenber
1996, pp. 886-894.

Standard for a Software Quality Metrics Methodology,
Revision, |EEE Std 1061-1998, 31 Deceamber, 1998.
Norman F. Schneidewind, "Methoddlogy for Validating
Software Metrics', IEEE Transadions on Software Engi-
neeing, Vol. 18, No. 5, May 1992, pp. 410-422.

Allen P. Nikora and John C. Munson, "Determining Fault
Insertion Rates for Evolving Software Systems’, Proceed-
ings of the Ninth Internationa Symposium on Software
Reliability Engineeging, Paderborn, Germany, November
4-7, 1998, pp. 306-315.

Norman F. Schneidewind, "Software Metrics Validation:
Space Shuttle Flight Software Example”, Annals of Soft-
ware Engineaing, J. C. Bdtzer AG, Science Publishers,
1(1995)287-309.

J. D. Jobson, Applied Multivariate Data Analysis, Volume
I, Springer-Verlag, 1992.

Table 1: Kolmogorov-Smirnov Distance for drcount=0 vs. drcount>0
Validation: Build 1 (n=1397 modules)
Metric Definition Critical Distance a Rank
(symbol) (counts per module) Value
prologue size(P) change history line count in module listing 63 0.592 0.005 1
statements (S) executable statement count 27 0.505 0.005 2
aa2 (E2) unigue operand count 45 0.472 0.005 3
loc (L) non-commented lines of code count 29 0.462 0.005 4
etal (E1) unique operator count 9 0.430 0.005 5
nodes (N) node court (in control graph) 17 0.427 0.005 6
Table 2: Boolean Discriminant Function: Validation (Build 1)
AM;<MC) V(M>MC)
P <63A\S<27A\E2,<45 P>63VS>27VE2:45
ngh Quallty C11=477 C1o=344 n;=821
F<FC Type2
drcount=0
Low Quality C=35 Cy=541 n,=576
F>FC Typel
drcount>0
N;=512 N,=885 n=1397
RF=56 TF=2579
ACCEPT REJECT
Table 3: Discriminative Power Validity Evaluation (Build 1, n=1397 modules)
Critical Values Statistical Criteria Application Criteria
Metric Set P S E2 L P1% P2% LQC % RFP % QIR 1 %
P 63 6.23 15.10 84.90 6.13 - 50.11
P, S 63 27 3.22 22.12 92.19 295 259 60.13
P, S E2 63 27 45 251 24.62 93.92 217 491 63.35
P,S E2, L 63 27 45 29 2.00 29.35 95.14 1.78 2.16 68.58
K-S Distance 0592 | 0505 | 0472 | 0.462

P: prologue size, S: statements, E2: eta2, L: lines of code

Table 4: Boolean Discriminant Function: Application (Build 2)

AM;;=MC) V(M;>MGC)
Pi<63A\S<27A\E2 <45 P>63VS>27VE2>45
High Quality ? Type2
? ? ?
Low Quality Typel
? ? ? ?
N1=228 N>=618 n=846
ACCEPT REJECT

Table 5: Comparison of Validation (Build 1, n=1397 modules) with Application (Build 2, n=846 modules)

Application Criteria

Critical Values Statistical Criteria
Metric Set P S E2 P: % P, % LQC % RFP % QIR 1 %
Validation P, S, E2 63 27 45 251 24.62 93.92 217 491 63.35
ApplicaionP, S, E2 63 27 45 3.07 26.71 93.78 2.69 9.11 73.05

P: prologue size, S: statements, E2: eta2

Table 6: Comparison of Relative Critical Value Deviation (RCVD) Discriminative Power

Build 1 (Validation) Build 2 (Applicaion)
F\’CTD (six metrics) RCVD (prologue size) RCVD (prologue size)
.80 Percentile RCVD .1026 .0517 0777
Value (Break Point)
BDF A RCVD ((P>63)V(S>27)V(E2>45)) ((P>63)V(S>27)V(E2>45)) ((P>63)V(S>27)V(E2>45))
AN(RCVD>.1026) A(RCVD>.0517) ANRCVD>.0777)
drcount identified 1400 1686 1002
(percent) (54.28) (65.37) (62.74)
modules with drcount 263 280 173
identified (percent) (18.83) (20.04) (20.45)
drcount density 5.32 6.02 5.79
(drcount/module)
drcount density for other 1.04 .80 .88
modules
BDF ((P>63)V(S>27)V(E2>45))
drcount density 2.85 251

1. RCVD (six metrics): mean of RCVDs of six metricsin Table 1

2. drcount identified: count of DRs on modules rgjeced by BDF /A RCVD; percent of total DRs
3. modues with drcount identified: count of modues rejeded by BDF A RCVD; percent of total modules

4., drcount density: drcourt/module @unt
5. drcount density for other modues: modues other than those rejeded by BDF A RCVD

Table 7: Regression Equation Summary for Predicting avedrcount
Predictor Type F R? MSE Mean Residual Predicted Actual Build
Variables Build drcount drcount
Build 1: Validation
aveS Exponential 56.94 .851 0.702 .0000 2377 2579
aveN Linear 283.13 .966 1.545 .0000 2241 2579
aveS, aveN Exponential 39.84 .899 0.754 .0000 2404 2579
Build 2 Application
aveS | Exponentia | 5694 | .81 | 0437 | [1637 [1597
S: statements, N: nodes, M SE: mean sguare aror computed between predicted and actual drcount

<4— Devdopment —p

Build 1: Vaidation Build 2 Application Maintenance of Build 2

Design Test Design Test
MCi —p-MG; ~_

M R M; —— Control & Predict ——p
RCVD;, rRovD,”” Quality
Fi=f(M;) F=f(Mj;) F: Known Quality >

M . Metricj on Modulei RCVD; : Relative Critical Vaue Deviation
MC; : Metricj Criticd Value for Metricj onModulei
F : Quality Fador on Modulei F=f(M;;): Quality Limits Predictor

Figure 1. Measurement Process

drcount vs. prologue size RCVD (Build 1)

Degreeof Quality Degradation Increasing Size:and 1001
Complexity 090
MN; MG M;; MX; 0.80 1
" > z 0.70 4
MIN Metric Scde MAX § .
. >
Quality Scde ‘5 o0]
EN EC = FX - CVD=.0517
i Q. 0.30
RCVDj; = (Mi-MC)/(MX;-MN)) Decreasing Quality 0]
0.10
Mij : Metricj onModulei FC : Quality Factor Criticd Vaue
MCJ . Metricj Criticd Vaue RCVDH : Relative Critical Value Deviation : 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
F : Quality Fador on Modulei i for Metricsi onModulei percentile prologue size

Figure 2. Quality Thermometer Figure 3.
actual vs. predicted drcount (100 module sets) Build 1
45
predicted drcount=EXP(0.1137+0.005669 7* avestmts)
4
35
s g

average drcount

—=—actual drcount
—— predicted drcount

8
module set number

6 10 12 14

Figure 4. Predicted vs. Actual drcount (Build 1) Figure 5.

actual vs. predicted drcount (100 module sets) Build 2

predicted drcount=EXP(0.1137+0.005669 7* avestmts)

250

200

150

average drcount

1.00

—* predicted drcount

0 1 2 3 4 5 6 7 8 9 10

module set number

Figure 6. Predicted vs. Actual drcount (Build 2)

drcount and prologue size RCVD percentiles

actual vs. predicted drcount (100 module sets) Build 1

—*—actual drcourt
—— 950 predicted upyer limit
~*—959% predicted lower limit

16
module set number

Predicted Limits vs. Actual drcount (Build 1)

actual vs. predicted drcount (100 module sets) Build 2

= actud drcount
—*—95% predicted upper limit
—*— 95 % predicted lower limit

300

average dreount

200

0 1 2 3 4 5 6 7 8 9

module set number

Figure 7. Predicted Limits vs. Actual drcount

(Build 2)

