

Investigation of Logistic Regression as a Discriminant of Software Quality

Proceedings of the 7th International Software Metrics Symposium, 4-6 April 2001,
London, England, pp 328-337.

Norman F. Schneidewind

Naval Postgraduate School
email: nschneid@nps.navy.mil

Abstract

 We investigated the possibility that Logistic
Regression Functions (LRFs), when used in combination
with Boolean Discriminant Functions (BDFs), which we
had previously developed, would improve the quality
classification ability of BDFs when used alone. This was
the case; when the union of a BDF and LRF was used to
classify quality, the predicative accuracy of quality and
inspection cost was improved over that of using either
function alone for the Space Shuttle. Also, the LRFs
proved useful for ranking the quality of modules in a
build. The significance of these results is that very high
quality classification accuracy (1.25% error) can be
obtained while reducing the inspection cost incurred in
achieving high quality. This is particularly important for
safety critical systems. Because the methods are general
and not particular to the Shuttle, they could be applied to
other domains. A key part of the LRF development was a
method for identifying the critical value (i.e. threshold)
that could discriminate between high and low quality and
at the same time constrain the cost of inspection to a
reasonable value.

Key Words: Software quality prediction, Logistic
Regression Functions, Boolean Discriminant Functions.

1. Introduction

 Over the past several years we have developed various
metrics models, including Boolean Discriminant
Functions (BDFs) for classifying quality; Kolmogorov-
Smirnov distance (K-S test) for estimating metric critical
values; various derivative calculations for assessing the
quality that could be achieved with various levels of
quality control and inspection; stopping rules for deciding
how many metrics to use in a discriminate function; point
and confidence interval estimates of quality [SCH00];
Relative Critical Value Deviation metrics for indexing

quality; and non-linear regression functions for predicting
quality [SCH99]. We have focused this research on the
Space Shuttle for which we have a large amount of data.

Now we turn our attention to investigate how logistic
regression would compare to our previous methods in
classifying quality. Although other researchers have
applied logistic regression to classifying quality, our
contributions are the following:

1) Developed a method to determine the critical values of
the Logistic Regression Functions (LRFs) for classifying
software quality, using the inverse of the Kolmogorov-
Smirnov (K-S) distance;

2) Compared the Discriminative Power of LRFs with
BDFs;

3) Investigated whether LRFs in combination with BDFs
would provide better quality discrimination than either
one used alone;

4) Investigated the ability of LRFs to rank quality; and

5) Performed 1 – 4 on a safety critical system: the Shuttle.

We were motivated to do this research for the

following reasons – each reason associated with a
research question:

1) BDFs provide excellent ability to classify low quality
modules. However, this result is achieved at a relatively
high cost of inspection, where this cost is incurred
because modules that are predicted to be fault prone are
inspected (see section 4.). Thus, the first research question
was: What misclassification and inspection rates could be
obtained by using logistic regression?

2) The purpose of BDFs is to provide criteria for deciding
whether a module is fault prone or not fault prone; BDFs,

mailto:nschneid@nps.navy.mil

as discrete functions, do not provide information about
the degree to which individual modules are fault prone.
BDFs only provide the degree of software quality for
entire software systems that consist of a set of modules. In
the case of the Shuttle, these are Operational Increments
(OIs). Using the BDF approach, we can compare the
quality of software across OIs. Thus, the second research
question was: Given that LRFs are the logit of the
probability of the occurrence of discrepancy reports
(DRs) (reports of deviations between requirements and
implementation) on modules as a linear function of key
metrics, and thus a continuous function, would the LRFs
provide additional information about the quality of
individual modules? See sections 3.2 and 3.3 for details
on how BDFs and LRFs are constructed, respectively.

3) In addition to the potential ability of LRFs to
discriminate quality, we also wanted to investigate their
ability to rank quality. Thus, the third research question
was: Would the array of the number of discrepancy
reports written against module i (drcount) rank in
approximately the same order as the array of Pi or logit
(Pi), where Pi is the probability of drcount>0?

 This paper is organized as follows: review related
research; provide an overview of the analysis approach;
compare the Discriminative Power of LRFs with BDFs;
evaluate the ability of LRFs to rank quality; and conclude
with answers to the research questions posed above.

2. Related Research

 Many models and methods have been employed to
classify the quality of software. We briefly describe a
selected few that are most related to our research. In two
related studies, Briand et al. used logistic regression to
assess the probability of a fault in a class as a function of
various object-oriented design measures [BRI98,
BRI198]. In a similar vein, Tang et al. used logistic
regression to investigate the association between object-
oriented metrics and fault prone classes [TAN99]. In
another example of logistic regression, Khoshgoftaar and
Allen used it to classify modules as fault-prone or not
fault-prone as a function of faults, requirements,
performance, documentation, and software trouble report
metrics [KHO97]. They developed a decision rule for
deciding whether a module was fault prone based on the
costs of misclassification. Khoshgoftaar and Allen also
used percentile ranking of quality factors to determine
thresholds for identifying the highest priority modules
(i.e., the “most fault prone” modules) [KHO98]. This
approach has the same objective as our quality ranking
method (to be described) except that we use Pi derived
from logistic regression to rank order drcount. Ohlsson
and Wohlin used historical fault distributions and changes

in principal components between releases to classify
software fault proneness into one of three categories:
“red”, yellow”, and “green” [OHL98]. This classification
is used to indicate the difficulty of maintaining the
software. In another approach to classification, Ohlsson
and Alberg used Alberg Diagrams to predict percentage
of faults as a function of percentage of modules by
ordering modules in decreasing order of faults and noting
the cumulative number of faults corresponding to various
percentages of modules [OHL96]. All of these approaches
have a common objective with ours: identify fault prone
software. Our work differs in three ways: 1) we
investigated whether BDFs in combination with LRFs
would improve quality classification of either used alone;
2) we derived a new quality discriminant -- critical values
(thresholds) of Pi that are used to classify quality; and 3)
we evaluated the quality ranking ability of LRFs.

3. Analysis

 Now we evaluate the ability of BDFs and LRFs to
classify quality, along with the cost of inspection that
would be incurred in achieving this quality. We used an
incremental approach to adding metrics to the BDFs and
LRFs, as described below [SCH00]. This is accomplished
in two activities: validation and application. Validation is
an activity that is required in order to identify metrics that
can predict low quality software that will require
corrective action during application. Application is an
activity during which validated metrics are applied to
control software quality. During validation, we used
Build 1, comprised of 1397 modules (576 with
drcount>0, 41.23%), as the source of both drcount and
metrics data to compute metrics discriminant functions
retrospectively (i.e., after both drcount and metrics data
were available). During application, we used these
discriminant functions and the metrics data from Build 2,
comprised of 846 modules (418 with drcount>0, 49.41%),
to control the quality of this build in real time prior to the
availability of drcount data. In order to not bias the
results, Build 2 is neither a descendant of nor
chronologically follows Build 1. We then compare the
ability of the BDFs and LRFs to classify quality and the
inspection cost that would be incurred by the two
methods.

These discriminant functions provide a cost effective
way of ensuring product quality compared with one
hundred percent manual inspection because with the
former, the expected quality and associated inspection
cost can be quantified, and only those modules that are
predicted to be fault prone are subjected to formal manual
inspection. Complete manual inspection is infeasible on
large systems and is itself fault prone due to the tedium
and fatigue that accompanies such an effort. In contrast,

our approach provides automated data collection and
computation of module metrics, using a metrics analyzer,
and the derivation of discrimant functions, using
spreadsheet and statistical tools. Using this approach, the
desired quality and the cost of achieving it can be
specified in advance and the metrics set and their critical
values selected to achieve those objectives.
3.1 Incremental Addition of Metrics to
Discriminant Functions

 We showed in [SCH00] that it is important to perform
a marginal analysis (i.e., identification of the incremental
contribution of each metric to improving quality) when
making a decision about how many metrics to include in
the discriminant function. If many metrics are added to
the set at once, the contribution of individual metrics is
obscured. Also, the marginal analysis provides an
effective rule for deciding when to stop adding metrics.
We also showed that certain metrics are dominant in their
effects on classifying quality (i.e., dominant metrics make
fewer mistakes in classifying quality than non-dominant
ones) and that additional metrics are not needed to
accurately classify quality. That is, a point is reached in
adding metrics where Discriminative Power is not
increased because: 1) the contribution of the dominant
metrics in correctly classifying quality has already taken
effect and 2) additional metrics essentially replicate the
classification results of the dominant metrics -- the
concordance effect. This result is due to the property of
the BDF, when used as an OR function, which will cause
a module to be rejected if only one of the module's
metrics exceeds its critical value. Related to the property
of dominance is the property of concordance: the degree
to which a set of metrics produces the same result in
classifying software quality as metrics are added to the
set. A high value of concordance implies that additional
metrics will not make a significant contribution to
accurately classifying quality; hence, these metrics are
redundant.

 In [SCH100], we developed six BDFs, comprised of
one to six metrics in order to evaluate the properties of the
BDFs over a range of metrics. As each metric was added
to the BDF for Build 1, during the validation activity, we
noted when the ratio of relative incremental quality to
relative incremental inspection (IQIR) reached a
maximum. This occurred at three metrics. Adding a fourth
metric did not increase the IQIR, although quality
continued to increase until the fifth metric was added. On
Build 2, we found that the maximum IQIR also occurred
at three metrics during the application activity. However,
in analyzing the LRFs, the criteria of association and
model fit were used. The application of these criteria
resulted in LRFs with four metrics and six metrics,

respectively. Thus for results to be comparable, we used
four and six metric BDFs and LRFs.

3.2 Boolean Discriminant Functions

 BDFs for OIs are formed by entering module metrics
into a Boolean expression in priority order, where the
priority is determined by the metrics’ K-S maximum
distance rank. The maximum distance is equal to the
maximum difference between two cumulative distribution
functions (CDFs), where the CDFs are distributions of
metric values for non-fault prone and fault prone
modules. The metrics’ critical values are obtained from
the inverse of the K-S maximum distance. This is the
value of a metric that corresponds to the maximum
distance. A BDF is a Boolean function consisting of AND
and OR operators, module metric values Mij, and metric
critical values MCj that is used to classify modules as
either accepted or rejected for module i and metric j.
When the following BDF evaluates to true, modules are
accepted:
(Mi1≤MC1)… �(Mij≤MCj)…�(Mim≤MCm)

When the following BDF evaluates to true, modules are
rejected:
(Mi1>MC1)…� (Mij>MCj)… � (Mim>MCm)

With the addition of quality factor values (Fi) and quality
factor critical value FC, as shown in equation (1), we
obtain module counts that are used to classify modules
into one of four categories, as defined below.

n
FORCO UN T

i =1

FO RCOU NT

FO RCOU NT

= ((F FC) (M C)... ()... ())C M CM M Mi1 ij im11 j mi 1

n
= ((F FC) ((>)... (>)... (>)))C M C M CM M Mi1 ij im12 1 j mii =1

n

= ((F FC) ()... ()... ())C M C M CM M Mi1 ij im21 1 j mii=1

� � � � � � �

� � � �

� � � � � � �

FORCO UN T

(1)

n
= ((F FC) ((>)... (>)... (>)))C M C M CM M Mi1 ij im22 1 j mii=1

� � � �

M C

M C

M C

M C

for j=1,...,m, and where COUNT(i)=COUNT(i-1)+1 FOR
Boolean expression true and COUNT(i)=COUNT(i-1),
otherwise; COUNT(0)=0. In our examples, Fi is drcount
and FC=0.

These counts have the following interpretations:

C11 = The count of modules in the build that are high
quality and no metric value exceeds its critical value.

C12 = The count of modules in the build that are high
quality and one or more metric values exceed its critical
value.

C21 = The count of modules in the build that are low
quality and no metric value exceeds its critical value.

C22 = The count of modules in the build that are low
quality and one or more metric values exceed its critical
value.

The counts C11 and C22 are correct classifications and the
counts C12 and C21 are misclassifications. These counts
are inputs to the remaining computations. Metric critical
values provide a threshold between two levels (e.g., high
and low) of the quality of the software [SCH00]. The
critical values derived from applying the K-S method are
shown in Table 1. Metrics were entered incrementally in
the BDFs in the sequence given by the K-S ranks in Table
1.

3.3 Logistic Regression Functions

 Logistic regression is based on the concept of the
success probability Pi of a binary event (e.g., the
probability of drcount>0 on module i). The odds of such
an event are defined as the probability of success divided
by the probability of failure, or Pi/(1- Pi). A logarithmic
transformation is applied to this quantity to produce
Logit(Pi) (see equation (2)). This transformation maps Pi

from the range (0,1) to the range (-∞,∞): an
unconstrained continuous range. Logit(Pi) is than modeled
as a linear function of independent variables (e.g., Mij), as
in equation (2) [COL91]. We formulated the logistic
regression equations as the logit of the probability of the
occurrence of discrepancy reports on a module as a linear
function of several metrics. The following is the equation
obtained from binary logistic regression that predicts the
probability Pi of drcount>0 on module i, using four
metrics:

Logit(Pi) = log [Pi/(1- Pi)] =
(-1.813)+(0.012225*C)+(0.012381*S)-(0.00148*E2)-
(0.0034733*L) (2)

Binary logistic regression fits a model with one or more
predictors using an iterative-reweighted least squares
algorithm to obtain maximum likelihood estimates of the
model parameters [Col91]. Equation (2) was formulated
based on the number of metrics that had the maximum
association of 87.2% (i.e., the maximum association
between the predicted and actual data). Metrics were
entered in equation (2) in the sequence given by the K-S
ranks in Table 1.

 The following is the equation obtained from binary
logistic regression that predicts the probability of DRs>0
on module i, using six metrics:

Logit(Pi)=
(-2.7003)+(0.010344*C)+(0.002841*S)+(0.00048E2*)-
(0.0020148*L)+(0.06908*E1)+(0.002876*N) (3)

As in equation (2), metrics were entered in equation (3) in
the sequence given by the K-S ranks in Table 1. This
equation had better fit than equation (2): �2/df=1.16
versus 1.50 but a lower association of 86.7%.

 A logit equation by itself does not provide a
discriminant of quality; a criterion for deciding whether a
module is fault prone or not fault prone is required
[KHO97]. We used the inverse of the K-S distance
[SCH00]. This was accomplished by finding the value PC
of Pi, where there was the maximum distance between the
cumulative distribution function (CDF) for drcount=0
versus drcount>0 (i.e., the critical value). These values
were PC=.00014828 for equation (2) and PC=.00012605
for equation (3). An example is shown for the four metric
case in Figure 1, and Figure 2 shows the plot of drcount
versus Pi; both figures indicate the critical value of Pi.
When these discriminants were used to classify quality for
Build 1, the results in Table 2 were obtained.

The module counts given by equation (1) can be applied
to the LRFs by replacing Mij with Pi and MCj with PC.

The module counts then have the following
interpretations:

C11 = The count of modules in the build that are high
quality and Pi does not exceed its critical value.

C12 = The count of modules in the build that are high
quality and Pi exceeds its critical value.

C21 = The count of modules in the build that are low
quality and Pi does not exceed its critical value.

C22 = The count of modules in the build that are low
quality and Pi exceeds its critical value.

3.4 Misclassification

We computed the degree of misclassification by
noting that ideally C11 = N1 = n1, the number of accepted
modules and the number of high quality modules,
respectively, C12 = 0, C21 = 0, and C22 = N2 = n2, the
number of rejected modules and the number of low
quality modules, respectively. The extent that this is not
the case is estimated by Type 1 misclassifications (i.e., the
module has Low Quality and the metrics "say" it has High
Quality) and Type 2 misclassifications (i.e., the module
has High Quality and the metrics "say" it has Low
Quality). Thus, we define the following measures of

misclassification, where n is the number of modules in the
build:

Proportion of Type 1: p1 = C21/n (4) (4) I=(C12+C22)/n (9)

Proportion of Type 2: p2 = C12/n (5) (5) 3.7 Tradeoff between Quality and Inspection
3.5 Quality

First, we estimated the ability of the metrics to
correctly classify quality, given that the quality is known
to be low:

LQC: Proportion of low quality modules (e.g., drcount>0)
correctly classified = C22/n2 (6)

Second, we estimated the ability of the metrics to
correctly classify quality, given that the BDF or LRF has
classified modules as acceptable. This is done by
summing quality factor in the accept category to produce
Remaining Factor, RF (e.g., remaining quality factor
drcount or number of DRs that were not caught when
classifying quality), given by equation (7).

FOR
n

RF = ((> 0) (MC1)... ()... ())F MCF M M Mi i i1 ij imj
i=1
� � � � � � �MCm

for j = 1,...,m (7)

This is the sum of Fi (e.g., drcount) on modules
incorrectly classified as high quality because (Fi>FC)�
(Mij��MCj) for these modules. Again, equation (7) can
be applied to the LRFs by replacing Mij with Pi and MCj
with PC.

 We estimated the Quality (Q) of the build by equation
(8), where TF is the total Fi for the build.

Q = (TF-RF)/TF (8)

 Assuming that the problems reported in the DRs of the
rejected modules are corrected, equations (6) and (8) give
the quality that would have been achieved if the
discriminant functions had been used in the design phase
of Build 1 to reject low quality modules. Furthermore,
these equations predict the quality that would be achieved
on Build 2.

3.6 Inspection

We were interested in weighing the cost of inspection
requirements (i.e., percent of modules rejected and
subjected to detailed inspection) against the quality that is
achieved, for various BDFs and LRFs. We estimated
inspection requirements by noting that all modules that
are rejected must be inspected; this is the count C12+C22.

Thus, the proportion of modules that must be inspected is
given by:

 Note that equation (8) classifies quality according to
correctness of drcount classification, whereas equation (6)
classifies quality according to correctness of module
classification. Therefore, it is appropriate to evaluate the
effectiveness of a discrimant with two types of
quality/inspection ratio, as in equations (10) and (11),
respectively.

QIR = Q/I. (10)

LIR = LQC/I (11)

For a safety critical system, it would be appropriate to
emphasize quality, using Q and LQC as the criteria; for a
commercial system, the quality/inspection ratios might be
more appropriate. However, we caution that a policy that
trades quality for decreased costs during development
could be short sighted. The costs of customer ill will and
the cost of correcting problems could outweigh reductions
in development cost. The results of computing equations
(4)-(6) and (8)-(11) are shown for BDFs and LRFs for
four and six metrics in Table 2 for Build 1.

4. Comparison of BDFs with LRFs

4.1 Validation Predictions

 Table 2 provides a comparison of the ability of BDFs
and LRFs to classify quality and the inspection cost that
would be incurred in achieving this quality during the
validation activity using Build 1. We see that BDFs are
superior quality classifiers but have a higher inspection
cost and lower quality/inspection ratios. Given these
results, it occurred to us that combining a BDF with a
LRF would yield even higher quality and lower inspection
cost than either one used alone. In order to achieve this
goal, we used the following modified BDFs that form the
union of the original BDF and the LRF conditions for
accepted and rejected modules, respectively:
((Mi1≤MC1)… �(Mij≤MCj)…�(Mim≤MCm))�(Pi≤PC)
((Mi1>MC1)…� (Mij>MCj)… � (Mim>MCm))�(Pi>PC).

 Using the BDF as the baseline, this approach permits
the LRF to accept a certain number of high quality
modules that were rejected by the BDF and to reject a
certain number of low quality modules that were accepted
by the BDF. The results are shown in the last row of

Table 2 for four metrics, where the quality classification
has improved. This approach would be appropriate for a
safety critical system but might not be worth the
additional cost of analysis for a commercial system.

4.2 Application Results

 Table 3 shows the results obtained by applying the
BDFs and LRFs validated in Build 1 to Build 2. The
critical values of BDFs and LRFs, MCj and PC,
respectively, obtained from Build 1, were used with the
metrics Mij of Build 2 during its design phase to accept
modules as not fault prone or to reject modules as fault
prone. This was accomplished in the absence of drcount
data. This was the case because in the actual application
of the validated BDFs and LRFs, complete drcount data
would not be available until the end of the test phase of
Build 2. The major point of validation is to develop
discriminant functions that can predict quality and
inspection cost of the application product sufficiently
early to detect and correct problems when the cost of
correction is relatively low. However, we retrospectively
analyzed the accuracy of prediction by using the critical
values from Build 1 and the metrics data and drcount
from Build 2 and recomputed equations (1)– (11).

 We see in Table 3 that the quality achieved by Build 2
BDFs and LRFs is slightly higher but the cost of
inspection is higher (i.e., more rejected modules) than that
predicted during Build 1. Such an outcome would be
favorable for safety critical systems but might be
considered too costly for commercial systems. As in the
case of Build 1, improved quality is obtained over either
the BDF or LRF alone, by combining the two functions.
Compared to the predictions of Build 1, the quality
achieved is slightly lower than that predicted in Build 1
and the cost of inspection is higher.

5. Ability of LRFs to Rank Quality

5.1 Validation Predictions

 We tested the ability of the LRFs to rank quality (i.e.,
the degree of association between Pi and drcount) during
the validation activity using Build 1. We did this
evaluation by using the Mann-Whitney test [CON71]. We
used this test to do a two-sample rank test for the
difference between the population medians of Pi and
drcount, where H0: medians of Pi and drcount are equal
and H1: medians are not equal. The results are shown in
Table 4, which indicates there is not a statistically
significant difference between the medians of Pi and
drcount at the indicated for both the four and six metric
LRFs. We performed an additional analysis to determine

the percentage of drcount corresponding to the highest
and lowest 100 ranks of Pi, using Build 1. The predictions
are shown in Table 4 for the four and six metric cases for
Build 1. Figure 3 shows drcount versus the rank of Pi for
the four metric LRF for Build 1.

The purpose of this analysis was to establish a
predictor threshold (i.e., highest 100 ranks of Pi) of the
lowest quality modules in the Application product (Build
2). That is, after calculating Pi for Build 2, ranking them
and determining the 100 highest rank threshold, all
modules within the 100 highest rank range were identified
as highly fault prone. This was accomplished in the
absence of drcount data for Build 2. Similarly, the 100
lowest ranks of Pi were used to establish the threshold for
modules that are not highly fault prone

5.2 Application Results

 The four metric and six metric LRFs on Build 2 failed
the Mann-Whitney test (i.e., relatively large ��), as
shown in Table 4. However, we made a retrospective
analysis of Build 2, using the quality ranking thresholds
identified in Build 1 and the drcount of Build 2. The
analysis of the highest and lowest 100 ranks for both the
four and six metric cases indicates a close correspondence
between predictions and results, as shown in Table 4.
Figure 4 shows drcount versus the rank of Pi for the four
metric LRF for Build 2.

6. Conclusions

 Referring to the research questions we posed in the
Introduction, we arrive at the following conclusions,
based on the analysis and results documented herein:

1) What misclassification and inspection rates could be
obtained by using logistic regression? We found that for
the same software system and using the same set of
metrics, BDFs were still superior to LRFs for quality
discrimination.

2) Would the LRFs provide additional information about
the quality of individual modules? We found that LRFs
used in isolation were of limited value. However, when
combined with BDFs they provided a marginal
improvement in quality discrimination for low quality
modules. This is the case because the quality
discrimination ability of BDFs is already high. However,
when LRFs are added, inspection cost is reduced from
that incurred when BDFs are used alone. We consider this
a significant finding in terms of providing an accurate
quality predictor (1.25% error; Q=98.75% for BDF∨LRF
in Table 3) for safety critical systems at reasonable cost

(relatively high values of QIR and LIR for BDF∨LRF in
Table 3). This is the lowest prediction error rate we have
found in the literature.

3) Would the array of the number of discrepancy reports
(reports of deviations between requirements and
implementation) written against a module (drcount) rank
in approximately the same order as the array of Pi or logit
(Pi), where Pi is the probability of drcount>0? We found
that the ranking of Pi provided accurate thresholds for
identifying both low and high quality modules. However,
the statistical test of difference in ranks between Pi and
drcount yielded mixed results.

 The method we developed for determining the critical
value of LRFs, using the inverse of the Kolmogorov-
Smirnov (K-S) distance, provided good balance between
quality and inspection cost.

 We are confident about the ability of BDFs to
consistently provide high accuracy quality classification
for the Shuttle software because prior studies involved
three builds and four subsets of these builds, where the
validated BDFs yielded high accuracy (approximately 3%
error) across builds without revalidating [SCH00,
SCH100]. However, although 2,244 modules were used in
the current study, the analysis to date on LRFs involved
only two builds. The results are encouraging but more
builds should be analyzed to increase confidence in the
results. The methods we have presented are general and
not particular to the Shuttle. Thus, the methods should be
applicable to other domains. However, the metric set,
critical values, and numerical results would in general
differ from those used for the Shuttle.

7. Acknowledgements

We wish to express our appreciation to the following:
Dr. Allen Nikora of the Jet Propulsion for the support of
this project, Dr. John Munson of Cylant Technology for
providing the data, and to the anonymous reviewers.

8. References

[BRI98] Briand, Lionel C., John Daly, Victor Porter, and
Jürgen Wüst , "Predicting Fault-Prone Classes with Design
Measures in Object-Oriented Systems", Proceedings of the
Ninth International Symposium on Software Reliability
Engineering, IEEE Computer Society, Los Alamitos, CA,
November 1998, pp. 334-343.

BRI198] Briand, Lionel C., John Daly, Victor Porter, and Jürgen
Wüst, “A Comprehensive Empirical Validation of Design
Measures for Object-Oriented Systems”, Proceedings of the
Fifth International Metrics Symposium, IEEE Computer
Society, Los Alamitos, CA, November, 1998, pp. 246-257.

[COL91] D. Collett, Modelling Binary Data, Chapman & Hall,
1991.

[CON71] W. J. Conover, Practical Nonparametric Statistics,
John Wiley & Sons, Inc., 1971.

[KHO97] Khoshgoftaar, Taghi, M. and Edward B. Allen,
"Logistic Regression Modeling of Software Quality", TR-CSE-
97-24, Department of Computer Science & Engineering, Florida
Atlantic University, Boca Raton, FL., March 1997.

[KHO98] Khoshgoftaar, Taghi, M. and Edward B. Allen,
"Predicting the Order of Fault-Prone Modules in Legacy
Software”, Proceedings of the Ninth International Symposium
on Software Reliability Engineering, IEEE Computer Society,
Los Alamitos, CA, November 1998, pp.344 -353.

[OHL96] Ohlsson, Niclas and Hans Alberg (1996), "Predicting
Fault-Prone Software Modules in Telephone Switches", IEEE
Transactions on Software Engineering, 22, 12, 886-894

[OHL98] Magnus C. Ohlsson and Claes Wohlin,
“Identification of Green, Yellow and Red Legacy Components”,
Proceedings of the International Conference on Software
Maintenance, IEEE Computer Society, Los Alamitos, CA
November 1998, pp. 6-15.

[SCH99] Norman F. Schneidewind and Allen P. Nikora,
"Predicting Deviations In Software Quality By Using Relative
Critical Value Deviation Metrics", Proceedings of The 10th
International Symposium on Software Reliability Engineering,
IEEE Computer Society, Los Alamitos, CA , November , 1999,
pp. 136-146.

[SCH00] Norman F. Schneidewind, "Software quality control
and prediction model for maintenance", Annals of Software
Engineering, Baltzer Science Publishers, Volume 9 (2000),
May 2000, pp. 79-101.

[SCH100] Norman F. Schneidewind, “On the Repeatability of
Metric Models and Metrics Across Software Builds”,
Proceedings of the Eleventh International Symposium on
Software Reliability Engineering, IEEE Computer Society Los
Alamitos, CA, October, 2000. (to be published).

[TAN99] Mei-Huei Tang., Ming-Hung Kao, and Mei-Hwa Chen
“An Empirical Study on Object-Oriented Metrics”, Proceedings
of the Sixth International Metrics Symposium, IEEE Computer
Society, Los Alamitos, CA, November, 1999, pp. 242-249.

+
 -

Table 1: Kolmogorov-Smirnov Distance for drcount=0 vs. drcount>0
Validation: Build 1 (n=1397 modules)

Metric
(symbol)

Definition
(counts per module)

Critical
Value

Distance

α

Rank

prologue size (C) change history line count in

module listing
63 0.592 0.005 1

statements (S) executable statement count

27

0.505

0.005

2

eta2 (E2) unique operand count

45

0.472

0.005

3

loc (L) non-commented lines of code
count

29 0.462 0.005 4

eta1 (E1) unique operator count

9

0.430

0.005 5

nodes (N) node count

(in control graph)

17

0.427

0.005

6

Table 2: BDF – LRF Comparison, Validation Predictions (Build 1, n=1397 modules)
Method p1 (%) p2 (%) LQC (%) Q (%) I (%) QIR LIR

 Metrics
BDF C, S, E2, L 2.00 29.35 95.14 98.22 68.58 1.43 1.38
BDF C, S, E2, L, E1, N 1.43 34.93 96.53 98.76 74.73 1.32 1.29
LRF C, S, E2, L 5.25 18.33 87.19 94.73 54.06 1.75 1.61
LRF C, S, E2, L, E1, N 4.02 21.68 90.21 94.57 58.72 1.61 1.54

BDF�LRF
C, S, E2, L

0.72

17.32

98.26

99.53

57.84

1.72

1.70

Table 3: BDF – LRF Comparison, Application Results (Build 2, n=846 modules)

Method p1 (%) p2 (%) LQC (%) Q (%) I (%) QIR LIR
 Metrics

BDF C, S, E2, L 1.30 36.29 97.37 98.43 84.40 1.33 1.32
BDF C, S, E2, L, E1, N 0.59 41.84 98.80 99.00 90.66 1.09 1.09
LRF C, S, E2, L 3.07 27.66 93.69 97.19 73.90 1.32 1.27
LRF C, S, E2, L, E1, N 2.73 30.69 94.47 97.33 77.71 1.25 1.22

BDF�LRF
C, S, E2, L

0.95

23.88

98.09

98.75

72.34

1.37

1.36

Table 4: LRF Quality Rankings, Validation Predictions (Build 1, n=1397 modules) vs.

Application Results (Build 2, n=846 modules)
 Metrics Mann Whitney � High 100 Ranks

 drcount (%)
Low 100 Ranks

 drcount (%)
Prediction C, S, E2, L .0000 40.93 .16

Result C, S, E2, L .5545 46.99 .67
Prediction C, S, E2, L, E1, N .0000 43.51 1.59

Result C, S, E2, L, E1, N .6434 47.61 1.02

Figure 1: CDFs vs. Pi, Logistic Regression (4 Metrics, Build 1)

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

Pi (Probability of DRs>0)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

DRs=0

DRs>0

Max CDF Difference at Pi=.00014828

Figure 2: drcount vs. Pi, Logistic Regression (4 Metrics, Build 1)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022 0.0024 0.0026 0.0028

Pi (Probability of DRs>0)

D
R

s p
er

 M
od

ul
e

Critical Value: Pi=.00014828

Figure 3: drcount vs. Rank of Pi, Logistic Regression (4 Metrics, Build 1)

0

10

20

30

40

0 200 400 600 800 1000 1200 1400

Rank of Pi

D
R

s p
er

 M
od

ul
e

 8007006005004003002001000

30

20

10

0

Rank of Pi

DR
s p

er
 M

od
ule

Figure 4: drcount vs Rank of Pi, Logistic Regression (4 Metrics, Build 2)

	1. Introduction
	2. Related Research
	3. Analysis
	3.1 Incremental Addition of Metrics to Discriminant Functions
	3.2 Boolean Discriminant Functions
	3.3 Logistic Regression Functions
	3.4 Misclassification
	
	
	
	
	3.6 Inspection

	3.7 Tradeoff between Quality and Inspection

	4. Comparison of BDFs with LRFs

	4.2 Application Results
	5. Ability of LRFs to Rank Quality

	5.1 Validation Predictions
	5.2 Application Results
	6. Conclusions
	8. References

	[CON71] W. J. Conover, Practical Nonparametric Statistics, John Wiley & Sons, Inc., 1971.

