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Abstract

The SpaceShttleavionics oftwarerepresents a successul i ntegration d many of the cmmputer
industry's most advanced software engineeing practices and appoaches. Beginning in the late
1970s this ftware devdopment and maintenance projed has evolved ore of the world's most
mature software processes apdying the principles of the highest levds of the Carnegie Mellon
Univesity Sdtware Engineeaing Institute's Capahlity Maturity Model, Trusted Sdtware
Methoddogy, andISO 9001 $andads. This ftware process consideredto bea"best practice' by
many softwareindustry organ zationsincludes sate-of-the-practicesoftwarereliahility engneeing
methoddogies. Life-critical Shutleavionics oftware produced by thisprocessis reagnized to be
amongthe highest qudity and hghest reliahilit y softwarein operationin theworld. Thiscase study
explores the successul use of exremely detail ed fault andfail ure history, throughot the software
life cyde, in the apgication d software reliability engineeingtechniquesto gan insight into the
flight-worthinessof the software andto suggest "whereto look” for remaining defeds. Therole of
softwarereliahilit y modelsandfail ure predictiontedhniquesis examined andexplained to al owthe
use of these approaches on aher software projeds. One of the most important aspeds of such an
approach,"howto useandinterpret theresults' of theapgication d suchtedniquesisaddressed .

Keywords. Verificaion and validation, software reliability measurement and prediction, safety
criticd software, risk analysis.

Space Shuitle Flight Software Application

The Space Shutle Primary Avionics Software Subsystem (PASS represents a successul
integration d many of the mmputer industry's most advanced software engineaing pradices and
approadies. Beginning in the late 1970s this sftware development and maintenance projed has
evolved ore of the world's most mature software processes applying the principles of the highest
levels of the Software Engineeaing Institute's Capability Maturity Model and 1SO 9001 Standards.
This ftware process considered to be a"best pradice' by many software industry organizations
includes gate-of-the-pradice software reliability engineaing (SRE) methoddogies. Life-criticd
PASSproduced by this processisrecgnized to be anong the highest quality and highest reli ability
software in operation in the world. Using this applicaion, we show how SRE can be gplied to:
interpret software reli abilit y predictions, suppat verificaionand validation d the software, assess
the risk of deploying the software, predict the reliability of the software, developtest strategiesto
bring the software into conformance with reli abilit y spedficaions, and make reli ability deasions
regarding deployment of the software.

Reli abilit y predictionsare arrently used by Lockheed-Martin Spacel nformation Systemsto add
confidenceto establi shed pasitionsregarding low fail ure probabiliti esfor the PASSthat are based on



formal software cetificaion processs. It is the purpose of this case study to share the experience
obtained from the use of SRE on this projed, since this application is judged by the Lockheed-
Martin team to be asuccesdul attempt to apply SRE to this Sftware. The SRE tedhniques and
concepts employed by Lockheead-Martin shoud be of value for other software systems.

Interpretation of Software Rdliability Predictions

Succesdul use of statisticd modelingin predicting thereli abilit y of asoftware systemrequiresa
thorough uncerstanding of preasely how the resulting predictions are to be interpreted and appli ed
[9]. The PASS (430 KLOC) is frequently modified, at the request of NASA, to add a change
cgpabilities using a onstantly improving process Each o these successve PASS versions
congtitutes an upgradeto the precading software version. Each new version of the PASS(designated
asan Operationa Increment, Ol) contains oftware mdewhich has been caried forward from ead
of the previous versions ("previous-version subset") as well as new code generated for that new
version ("new-versionsubset").We havefoundthat by applying aredli abilit y model i ndependently to
the ade subsets acording to the following rules, we can oltain satisfadory composite predictions
for the total version:

(1) al new code developed for aparticular version daes use anealy constant process

(2) al codeintroduced for the first time for aparticular version daes, as an aggregate, buld upthe
same "shelf-life" and operational exeaution hstory

(3) unless sibsequently changed for a newer cgpability, thereby becoming "new code" for alater
version, al new code is only changed theredter to corred faults.

It isessential to reaognizethat thisapproad requiresavery acarate cde change history so that
every failure can be uniquely attributed to the version in which the defective line(s) of code were
first introduced. Inthisway it ispossbleto buld aseparate fail ure history for the new codein eat
release. To apply SRE to your software system you shoud consider bre&ing your systems and
processes down into small er elements to which areliability model can be more acarately applied.
Using thisapproach, we have been successul in applying SRE to predict thereli ability of the PASS
for NASA.

Estimating Exeaution Time

We estimate exeautiontime of segments of the PASSsoftware by analyzing records of test cases
in dgital simulations of operational flight scenarios as well as records of adua use in Shitle
operations. Test case exeautions are only cournted as "operational exeaution time" for previous-
version subsets of the version being tested if the simulation fidelity very closely matches adual
operational condtions. Pre-release test exeaution time for the new code acdually being tested in a
versionis never courted as operational exeautiontime. We use the fail ure history and operational
exeautiontime history for the new-code subset of ead versionto generate anindividual reliability
prediction for that new code in ead version by separate goplicaions of the reliability model. This
approach paces every line of code in thetotal PASSinto ore of the subsets of "newly" developed



code, whether "new" for theoriginal version a any subsequent version.Wethen represent thetotal
reliability of the entire software system asthat of a mmpaosite system of separate cmmporents ("' new-
code subsets"), ead having an individual exeaution history and reliability, conneded in series.
Lockheed-Martiniscurrently using this approach to apply the Schneidewind[8,9] model asameans
of predicting a"conservative lower bound' for the PASSreli ability.

Interpretations and Credibili ty

Thetwo most criti cd fadorsin establi shing credibilit y in softwarereli abilit y predictionsarethe
validation method and the way the predictions are interpreted. For example, a "conservative'
prediction can be interpreted as providing an "additional margin of confidence' in the software
reliability, if that predicted reliability already exceals an established "acceptable level” or
requirement. You may not be éle to validate that you can predict the reliability of your software
predsely, bu youcan demonstrate that with "high confidence' youcan predict alower bound orthe
reliability of that software within aspedfied environment. If you can use historicd faluredata & a
series of previous dates (and you have the adual datafor the fail ure history foll owing those dates),
youshoud be &leto compare the predictionsto the adual reli abilit y and eval uate the performance
of themodel (s) used. Youshoudtake dl thesefadorsinto considerationasyou establi sh validation
successcriteria. Thiswill also significantly enhancethe aedibility of your predictionsamong those
who must make dedsions based onyour results.

Verification and Validation

Software reli ability measurement and prediction are useful approadhes to verify and validate
software. Measurement refers to colleding and analyzing data éou the observed reliability of
software, for example the occurrence of failures during test. Prediction refers to using a model to
forecast future software reliability, for example fail ure rate during operation. Measurement aso
provides the fail ure data that is used to estimate the parameters of reli ability models (i.e., make the
best fit of the model to the observed fall ure data). Once the parameters have been estimated, the
model isused to predict the future reliabilit y of the software. Verification ensuresthat the software
product, asit existsinagiven projed phase, satisfiesthe condtionsimpaosed in the precaling phase
(e.g., reliabilit y measurements of safety criti cd software cmporentsobtained duing test conform to
reliability speaficationsmadeduring design) [5]. Validationensuresthat the software product, asit
existsin agiven projed phase, which could be the end d the projed, satisfies requirements (e.g.,
software reliability predictions obtained during test correspondto the reliability speafied in the
requirements) [5].

Another way to interpret verificaion and validationisthat it buil ds confidencethat softwareis
ready to bereleased for operational use. Therelease dedsioniscrucia for systemsinwhich software
fail ures could endanger the safety of themissonandcrew (i.e., safety criticd software). Toassst in
making an informed dedsion, we integrate softwarerisk analysis andreli abilit y prediction,andwe
are evaluating stoppng rules for testing. This approach is applicable to al safety criticd software.
Improvementsin thereliability of software, wherethe reli abilit y measurementsand predictionsare
diredly related to misson andsafety, contribute to system safety.

Reliability Measurements and Predictions



There ae anumber of measurementsand redictionsthat can be made of reliabilit y to verify and
vali date the software. Among these areremainingfail ures, maximumfail ures, total test timerequired
toattainagivenfraction d remainingfail ures, andtimeto nex fail ure. These have been shownto be
useful measurements and predictions for: 1) providing confidence that the software has achieved
reliability goals; 2) rationalizing how long to test a software cmporent (e.g., testing sufficiently
long to verify that the measured reliabilit y conformsto design spedficaions); and 3 anayzing the
risk of nat achieving remainingfail ure andtime to nex fail ure goals [6]. Having predictions of the
extent to which the softwareis not fault free(remaining fail ures) andwhether afall ureit islikely to
occur during amisgon (time to nex fail ure) provide aiteriafor assesang therisk of deploying the
software. Furthermore, fraction d remainingfail ures can beused asbath an operationd qudity goa
in predicting total test time requirements and, conversely, asan indicator of operationd qudityasa
function d total test time expended [6].

Thevarious Sftwarereliabilit y measurementsand predictions can bedivided into thefoll owing
two caegories to use in combination to asgst in asauring the desired level of reliability of the
software in safety criticd systems like the PASS The two caegories are: 1) measurements and
predictions that are essociated with residual software faults and fail ures, and 2 measurements and
predictions that are asciated with the aility of the software to complete amisson withou
experiencing afail ure of aspedfied severity. Inthefirst caegory are: remainingfail ures, maximum
failures, fraction d remaining failures, and total test time required to atain a given number or
fraction d remaining failures. In the seaond caegory are: time to nex failure and total test time
required to attain a gven time to nex failure. In addition, there is the risk associated with na
attaining therequired remainingfail uresandtimeto nex fail ure. Lastly, thereisoperationd qudity
that isderived from fraction d remainingfail ures. With thistype of information asoftware manager
can determine whether more testing is warranted o whether the software is aufficiently tested to
allow its release or unrestricted use. These predictions provide aquantitative basis for achieving
reliability goals[2].

Risk Assssnent

Safety Risk pertains to exeauting the software of a safety criticd system where there is the
chanceof injury (e.g., astronaut injury or fatality), damage (e.g., destruction d the Shutle), or loss
(e.g., lossof the misson) if aserious ftware fail ure occurs during a misson. In the case of the
Shutle PASS where the occurrence of even trivia fall uresis extremely rare, the fradion d those
failuresthat pose any safety or missonsuccessimpad istoosmall to bestatisticdly significant. Asa
result, for thisapproad to befeasible, al fall ures (of any severity) over the entire 20-yea life of the
projed have been included in the failure history database for this analysis. Therefore, the risk
criterion metrics to be discussed for the Shutle quantify the degree of risk associated with the
occurrenceof any softwarefail ure, nomatter how insignificant it may be. The gproach used can be
applied to Safety Risk where sufficient data exist.



We ae experimenting with an agorithm, which uses of the Schneidewind Sdtware Reli ability
Model to compute aparameter: fraction d remaining failures as afunction d the achived failure
history during test and ogeration [6]. The prediction methoddogy uses this parameter and aher
reli abilit y quantitiesto provide boundsontotal test time, remainingfail ures, operationd qudity, and
time to next failure that are necessary to med arbitrarily defined Shutle software reliability levels.
The total test time versus fraction o remaining failures curve shows a pronourced asymptotic
charaderistic that indicaesthe posshility of big gainsin reli abilit y astesting continues; eventually
the gains become marginal as testing continues.

Two criteriafor software reli ability levelswill be defined. Then these aiteriawill be gplied to
therisk analysis of safety criti cd software, using the PASSas an example. Inthe cae of the Shuitle
example, the "risk" will represent the degreeto which the occurrence of failures does nat med
required reliability levels, regardlessof how insignificant the fail ures may be. Next, avariety of
prediction equations that are used in reliability prediction and risk analysis will be defined and
derived; included istherelationship between timeto nex fail ureandreductionin remainingfail ures.
Then it is dhown haw the prediction equations can be used to integrate testing with reli ability and
quality. Anexampleis shown of how therisk analysisand reli abilit y predictionscan be used to make
dedsions abou whether the software is ready to deploy; this approach could be used to determine
whether a software system is safe to deploy.

Criteriafor Reliability

If thereliability goal isthereduction d fail ures of aspedfied severity to an acceptablelevel of
risk [7], then for software to be ready to deploy, after having been tested for total time t;, it must
satisfy the following criteria:

1) predicted remaining fail ures r(t,)<r, Q)
wherer.isaspedfied criticd value, and

2) predicted time to next fail ure Tg(t)>tp, 2
wheret,, ismisson duation. Thetotal timet; could represent a Safe/Unsafe aiterion, a thetimeto
remove dl faults regardliessof severity (as used in the Shutle example).

For systems that are tested and operated continuowsly like the Shutle, t;, Te(t), and t,, are
measured in exeautiontime. Note that, as with any methoddogy for asauring software reli abilit y,
there is no guarantee that the expeded level will be atieved. Rather, with these aiteria, the
objediveis to reducetherisk of deploying the software to a"desired" level.



Remaining Failures Criterion

Using the assumption that the faults that cause fail ures are removed (this is the cae for the
Shutle), criterion 1spedfiesthat theresidual fail uresandfaults must bereduced to alevel wherethe
risk of operating the softwareisacceptable. Asapradicd matter, r.=1is suggested. That is, thegoal
isto reducethe expeded remaining fail ures of aspedfied severity to lessthan ore before deploying
the software. The asumptionfor thischoiceisthat one or more remainingfail ureswould constitute
an uncesirable risk of failures of the spedfied severity. Thus, ore way to spedfy r. is by failure
severity level (e.g., include) only life threaening fail ures). Another way, which imposes a more
demanding criterion,isto spedfy that r. represents all severity level, asinthe Shutle example. For
example, r(t)<1 would mean that r(t;) must be lessthan ore fail ure, independent of severity level.

If r(t)=>rc is predicted, testing would continue for atotal time t;">t; that is predicted to achieve
r(t¢)<r., using the esumptionthat morefail ureswill be experienced andmorefaultswill be correded
so that the remaining failures will be reduced by the quantity r(t,)-r(t). If the developer does not
have the resources to satisfy the aiterion a is unable to satisfy the aiterion through additi onal
testing, therisk of deploying the software prematurely shoud be esessd (seethenext sedion). Itis
known that it isimpaossble to demonstrate the ésence of faults [3]; however the risk of failures
occurring can be reduced to an acceptable level, as represented by r.. This enario is siown in
Figurel.Incase Ar(t)<r.ispredicted andthe misson keginsat t;. In case B r(t;)>r. is predicted and
themissoncould be postpored urtil the softwareistested for total timet; whenr(t;)<r.ispredicted.
In bah cases criterion 2 might also be required for the missonto begin.

Timeto Next Failure Criterion

Criterion 2spedfies that the software must survive for atime greder than the duration d the
misgon. If Tg(t)<tn, is predicted, the software is tested for atotal time t{">t; that is predicted to
achieve Te(t")>tm, using the assumptionthat morefail ureswill be experienced andfaults correded
sothat thetimeto nex failurewill beincreased by the quantity Te(t")-Te(t;). Again, if it isinfeasible
for the devel oper to satisfy the aiterionfor ladk of resourcesor fail ureto achievetest ojedives, the
risk of deploying the software prematurely shoud be asessed (seethe next sedion). This £enariois
shownin Figure 2. In case A Te(t;)>tn, is predicted andthe misgon keginsat t.. In case B Tg(t) <ty is
predicted andin thiscasethemissoncould be postpored urtil the softwareistested for tota timet;"
when Tg(t")>t, is predicted In bah cases criterion 1) might also be required for the misson to
begin. If neither criterionis satisfied, the softwareistested for atimewhichisthe greaer of t; or t;".

Total Test Time

The anourt of total test time t; can be considered a measure of the degreeto which software
reliability goals have been achieved. Thisis particularly the cae for systemslike the Shutle where
the softwareis subjeded to continuouws and rigorous testing for several yeasin multiple fadliti es,
using avariety of operational andtraining scenarios(e.g., by Lockhead-Martinin Houston, by NASA
in Houstonfor astronaut training, and by NASA at Cape Canaveral). We can view t;asaninpu toa
risk reduction pocess and r(t;) and Tg(t;) as the outputs, with r. and t,, as "risk criterialevels' of
reliability that control the process While it must be recognized that total test timeis not the only



consideration in developing test strategies and that there ae other important fadors, like the
consequences for reliability and cost, in seleding test cases [11] nevertheless for the foregoing
reasons, total test time has been foundto be strongly pasitively correlated with reli abilit y growth for
the Shutle[9].

Remaining Failures

The mean value of therisk ariterion metric (RCM) for criterion lisformulated as foll ows:
RCM r(t)= (r(t)-re)/re=(r(t)/re)-1 ©)

Equation (3) isplotted in Figure 3 asafunction d t; for re=1, where positi ve, zero, and negative
values correspondto r(t,)>r., r(t)=r., andr(t,)<r, respedively. In Figure 3, these values correspondto
the foll owing regions: CRITICAL (i.e., above the X-axis predicted remaining fail ures are greaer
than the spedfied value); NEUTRAL (i.e., onthe X-axis predicted remainingfail uresare equal tothe
spedfied value); and DESIRED (i.e., below the X-axis predicted remaining failuresarelessthan the
spedfied value, which could represent a"safe” threshald or in the Shutle example, an "error-free'
condtion bounary). Thisgraphisfor the Shutle Operationd Increment OID (with many yeas of
shelf life) : asoftware system comprised of modues and configured from a series of buil dsto mee
Shutle missonfunctional requirements. Inthisexampleit can beseen that at approximately t=57
the risk transitions from the CRITICAL region to the DESIRED region.

Timeto Next Failure

Similarly the mean value of the risk cariterion metric (RCM) for criterion 2is formulated as
follows:
RCM Te(t)=(tm-Te(t))/tm=1-(Te(t))/tm 4

Equation (4) isplotted in Figure 4 as afunction d t; for t,=8 days (atypicd misson duationtime
for thisOl), where positi ve, zero, and negativerisk correspondsto Te(ty)<tm, Tr(t)=tm, and Te(t)>tm,
respedively. InFigure 4, these values correspondto the foll owing regions: CRITICAL (i.e., above
the X-axis predicted timeto next fail ureislessthan the spedfied value); NEUTRAL (i.e., onthe X-
axis predicted timeto next fail ureisequal to the spedfied value); and DESIRED (i.e., below the X-
axis predicted timeto nex failureis greaer than the spedfied value). This graphisfor the Shutle
operationa increment OIC, In this example the RCM isin the DESIRED region at all values of t;.

Approach to Prediction

In aorder to suppat the reliability goal and to assessthe risk of deploying the software, various
reli ability and quality predictions are made during the test phaseto vali date that the software meds
requirements. For example, suppcse the software reliability requirements gate the following: 1)
ideally, after testing the softwarefor total test timet;, the predicted remaining fail uresshall beless
than oreg; 2) if theided of 1) canna be adieved die to cost and schedule constraints, timeto next
fail ure, predicted after testing for total test timet;, shall exceal themisson duation; and 3 therisk
of nat meding 1) and 2 shall be assessed. Thus, this approad uses a software reli ability model to
predict thefoll owing: 1) maximum fail ures, remaining fail ures, and operationd quality (as defined



in the next sedion); 2) time to nex failure (beyond the last observed failure); 3) total test time
necessary to achieverequired levels of remainingfail ures(fault) level, operationd qudity, andtime
to nex fail ure; and 4) tradeoff sbetween increasesin levelsof reliabilit y and quality withincreasesin
testing (i.e., cost of testing).

Animportant concept to naeisthat reli ability will be measured duing test; that is, fail ure data
will be mlleded for two puposes. 1) to verify that the observed data conform to the reliability
spedfied duingdesign and 2 to provide datafor reli abilit y parameter estimation. Withregardto 1),
the observed time to nex failure can be cmpared to the spedfied quantity. However, in contrast,
observed remaining fail ures and maximum fail ures have no meaning because we dorit know how
many remainingfail ures (faults) there ae & agiven time during thelife of the software andwedont
know the maximum failures that will have occurred at the end d the life of the software. Thus
remaining fail ures and maximum fail ures only have meaning as predicted quantiti es. However, we
can make goproximations to these quantiti es for model validation pupases (seethe Summary of
Predictions sedion).

Prediction Equations

In order to consider therisk of deployingthe PASS various predictions have been made based on
the Schneidewind Sdtware Reliability Model [1, 8, 9, 10, ore of the four modelsrecommended in
the ANSI/AIAA Reaommrended Practicefor Sdtware Reliahility[1]. The equationsarederivedinthe
next sedion. They have been applied to analyze the reliabilit y of the PASSbased onthe gproach
recommended herein. The Satistical Modeling andEstimation of Reli ahilit y Functionsfor Sdtware
(SMERFS) [4] isused for al predictions except t;, which is not implemented in SMERFS.

Because the PASSis run continuowsly, aroundthe dock, in smulation, test, or flight, "time"
refersto continuows exeautiontime andtotal test timerefersto exeautiontimethat isused for testing.
Failure murt intervals are equal length periods of continuows exeautiontime.

In the following equations parameter o is the failure rate at the beginning of interval s;
parameter B is the negative of the derivative of failure rate divided by failure rate (i.e., relative failure
rate); tisthelast interval of observed fail ure data; sisthe starting interval for using observed fail ure
data in parameter estimation that provides the best estimates of a and  and the most accurate
predictions[8]; Xs1 isthe observed failure curt in the range [1,5-1]; X isthe observed failure
court intherange[st]; and X=Xs1+Xs;. Falluresare curnted against operationd increments(Ols).
Datafrom four Shutle Ol's, designated OIA, OIB, OIC, and OID are used in thisanalysis example.

Cumulative Failures

When estimates are obtained for the parameters o and B, with s as the starting interval for using
observed fail ure data, the predicted failure court in therange [s,t] isobtained:

Fse=(o/B)[ 1-exp(-((t-s+1)))] )

Furthermore, if X1, the observed failure court in the range [1,5-1], is added to equation (5), the
predicted failure curt intherange[1,t] isobtained:



F(t)=(o/B)[1-exp(-B((t-s+1)))] +Xs2 (6)
Failuresin an Interval Range

Let t=t, andsubtrad X=Xs1+Xs11, the observed fail ure court intherange[1.t;], fromequation
(6), then oltain the predicted failure curt in the range [ty,to]:

F(twt2)=(a/B)[1-exp(-B((t-s+1)))]-Xsua (7
Maximum Failures

Let t-~ inequation(6) and okiain the predicted failurecournt intherange[1,] (i.e., maximum
failures over the life of the software):
F(eo)=a/p+Xs1 (8

Remaining Failures
To oltain predicted remaining failuresr(t) at timet, subtrad X=Xs1+Xs; from equetion (8):
r(t)=(a/B)-Xs=F()-Xt 9)

r(t) can also be expressed asafunction o total test timet; by substituting equation (5) for Xs;in
equation (9) and letting t=t;:
r(t)=(o/B)(exp-Plt-(s-1)]) (10

Fraction of Remaining Failures

If equation (9) is divided by equation (8), fraction d remaining failures, predicted at timet is
obtained:
p(t)=r(t)/F(=) (11

Operational Quality
The operationd qudity of softwareisthe complement of p(t). It isthe degreeto which software

is free of remaining faults (failures), using the aumption that the faults that cause fail ures are
removed. It is predicted at timet as foll ows:

Q(t)=1-p(t) (12
Total Test Timeto Achieve Speafied Remaining Failures
The predicted total test time required to achieve aspedfied number of remaining failures at t;,

tt =[logla /(BIr(tt)D1]/ B +(s1) (13)
r(ty), is obtained from equation (10) by solving for t;:



Timeto Next Failure
By substituting t,=t+T((t) in equetion (7), letting t; =t, defining F=F(t,t+Tg),and solving for Tx(t),

TE® =[(logla/(aB(Xst+Fpl)/ Bl(ts+1)
(14
for(a/B)>(Xst+Ft)

the predicted time for the nex F; failuresto occur, when the aurrent timeist, isobtained :
Thetermsin Tg(t) have the foll owing definiti ons:

t: Current intervd;
Xst: Observed failure wurt in therange [s,t]; and
F: Given number of falluresto occur after interval t.

Equations (5)-(11) and (14) are predictors of reliability that cen berelated to safety or, asin the
Shutle example, the eror-free ondtion d the software; equation (13) representsthe predicted total
test time required to achieve stated reliability goals. If a quality requirement is gated in terms of
fraction d remaining failures, the definition d Q as Operationd Quality, equation (12), is the
degree to which the software meds Pedfied requirements [7]. For example, if a reliability
spedficaion requires that software is to have no more that 5% remaining failures (i.e., p=.05,
Q=.95) after testing for atotal of t; intervals, then apredicted Q of .90would indicate the degreeto
which the software meds the requirement.

Relating Testing to Reliability and Quality

Predicting Total Test Time and Remaining Failures

Thetradeoff between testing andreli abilit y can be analyzed by first using equation(8) to predict
maximum fail ures (F(«>)=11.76for Shutle OlA). Then, using gven valuesof pandequation(11) and
letting t=t;, r(t;) is predicted for eat value of p. The values of r(t;) are the predictions of remaining
fail ures after the Ol has been exeauted for total test timet;. Next the values of r(t;) and equation (13)
are used to predict correspondng values of t;. Theresultsareshown in Figure 5, wherer(t;) andt; are
plotted against p for OIA. Note that required total test timet; rises very rapidly at small valuesof p
and r(t). Also nae that the maximum value of p onthe plot corresponds to t=18 and that small er
values correspondto future values of t; (i.e., t>18).

Predicting Operational Quality

Simil arly, the tradeoff between testing and quality can be analyzed by using equation (12), which
isauseful measure of the operationd qudity of software becaise it measures the degreeto which
faults have been removed from the software (using the assumption that thefaultsthat causefail ures
areremoved), relativeto predicted maximumfail ures. Thistypeof quality iscdled operationd (i.e.,
based onexeauting the software) to dstinguish it from static quality (e.g., based onthe complexity of
the software). Using gven values of p and equations (11) and (12) and letting t=t;, r(t) and Q are



computed, respedively. Thevaluesof r(t;) arethen used in equation (13) to computet;. Like equation
(12), equation (13) hasthe asymptotic property of agrea amount of testing required to achieve high
levels of quality.

M aking Reli ability Dedsions

In making the dedsion abou how long to test, t;, the reliability criteria and risk assessment
approach can be gplied. Table 1 is used to ill ustrate the process For t=18 (when the last fail ure
occurred onOIA), re=1, and t,=8 days (.267intervals), remaining failures, RCM for remaining
fail ures, timeto nex fail ure, RCM for timeto nex failure, and operationd qudity are shown. These
results indicae that criterion 2is stisfied bu not criterion 1 (i.e,, CRITICAL with resped to
remaining failures); also operationd qudlity islow.

By looking at Table 1, it can be seen that if remainingfailuresr(18) arereduced by 1from 4.76
to 3.76(norinteger values are poss ble because the predictions are mean val ues), the predicted time
to nex failurethat would be adievedis Te(18)=3.87intervals. These predictions stisfy criterion 2
(i.e., TH(18)=3.87>t=.267) but nat criterion 1(i.e., r(18)=4.76>r,=1). Note dso in Table 1 that
fraction o remainingfail ures p=1-Q=.40at r(18)=4.76.Now, if testing is continued for atotal time
=52 intervals, as shown in Table 1, and remaining failures are reduced from 4.76to .60,the
predicted time to next 4.16failures that would be adieved is 33.94(34, rounded) intervals. This
correspondsto t=18+34=52intervals. That is, if testingiscontinued for an additional 34 intervals,
starting at interval 18, ancther 4.16 failures would be expeded. These predictions now satisfy
criterion 1because r(52)=.60<r.=1. Note dso in Table 1 that fraction d remaining fail ures p=1-
Q=.05at r(52)=.60.Using the cmnwerse of the relationship, provides ancther perspedive, where, if
testing iscontinued for an additional Te=34intervals, starting at interval 18, the predicted reduction
in remaining fail ures that would be atievedis4.16 o r (52)=. 60

Lastly, Figure 6 shows the Deployment Dedsion, relevant to the Shutle (which could be the
Laurch Dedsionrelativeto the Shutle), where remainingfail ures are plotted against total test time
for OIA. With theseresultsin hand, the software manager can dedde whether to deploy the software
based onfadors such as predicted remainingfail ures, as s1ownin Figure 6, along with considering
other fadors sich asthetrendin reported faults over time, inspedionresults, etc.. If testing wereto
continue urtil t=52, the predictionsin Figure 6 and Table 1 would be obtained. These results show
that criterion lisnow satisfied (i.e., DESIRED) and operationd qudity ishigh. Figure 6 also shows
that at t;=52, further increaseswould na result inasignificant increasein reliability. Also naethat
a t=52it isnot feasible to make aprediction d T¢(52) becaise the predicted remaining failuresis
lessthan ore.



Table 1. Reliability Criteria Asesanent of OlA

re=1 =8
days
t; a B s r(ty) RCM s | Tet) | RCM Q

r(te) Tr(ty)

18 5341 0611 9 4.76 3.76 9 3.87 -13.49 | .60

52 5341 0611 9 .60 -.40 9 * * .95

* Canna predict because predicted Remaining Fail uresislessthan ore.

Summary of Predictions

Table 2 showsasummary of remaining and maximum fail ure predictions compared with adual
failuredata, where avail able, for OIA, OIB, OIC, and OID. The purpaose of thisanalysisisto vali date
the model for Shutle appli cations. Because actual remaining and maximum fail ures are unknawn,
the ssumption is used: that remaining failures are "zero" for thase Ol's (B, C, and D) that were
exeauted for extremely long times (yeas) with noadditional fail ure reports; correspondngly, for
these Ol's, the ssumptionis used: that maximum fail ures equal s total observed fail ures.

Table 2. Predicted Remaining and Maximum Failures versus Actuals

t; s a B r(t) Actual r F (=) Actual F
OlA 18| 9 | 534 | .061| 4.76 * 11.76 e
OIB 20| 1 | 169 )| 131 | 0.95 1° 12.95 13
oIC 20| 7 | 137 | 126 | 1.87 2¢ 12.87 13
OID 18| 6 | .738| .051 | 7.36 4° 17.36 14°

Timeof last recorded failure:

A. No additional fail ures have been reported after 17.17intervalsfor OIA.
B. Thelast recorded failure occurred at 63.67intervalsfor OIB.

C. Thelast recorded fail ure occurred at 43.80intervals for OIC.

D. Thelast recorded fail ure occurred at 65.03intervals for OID.




Table 3 shows asummary of total test time andtimeto nex fail ure predictions compared with
adual exeautiontime data, where avail able, for OIA, OIB, OIC, and OID.

Table 3. Predicted Total Test Timeand Timeto Next Failure versus Actuals

s t(r=1) Actual t t s | T | Actual T
OIA 9 43.59 ? 18 9 3.9 ?
OB 1 * 63.67 20 0 * 43.67
olC 7 24.98 27.07 20 5 4.2 7.63
OoID 6 56.84 58.27 18 5 6.4 6.20

* Canna predict because predicted Remaining Fail uresis lessthan ore.
Additional Predictionsfor OID:

Thefoll owing are alditional predictions of total test timefor OID that arenct listed
in Table 3: t(r=2)=43.35,Actual=45.17 t,(r=3)=35.47,Actual=23.70.

L esons L ear ned

Severa important lessons have been learned from our experienceof twenty yeasin developing
and maintaining the PASS which you could consider for adoptionin your SRE process

1) No ore SRE processmethodisthe"sil ver bull et” for achieving high reli abilit y. Various methods,
including formal inspedions, fail ure modes analysis, verificaionand validation, testing, statisticad
processmanagement, risk analysis, and reli ability modeling and prediction must be integrated and
applied.

2) The processmust be continually improved and upggraded. For example, recent experiments with
software metrics have demonstrated the potential of using metrics as ealy indicators of future
reli abilit y problems. Thisapproacd, combined with inspedions, al ows many reli abilit y problemsto
be identified and resolved prior to testing.

3) The processmust have feedbadk loops 2 that information abou reli abilit y problems discovered
duringinspedionandtesting isfed badk nat only to requirementsanaysisand design for the purpose
of improving the reliability of future products but also to the requirements analysis, design,
inspedionandtesting processesthemselves. In ather wordsthe feedbadk isdesigned toimprove not
only the product but also the processes that producethe product.

4) Given the aurrent state-of-the-pradice in software reliability modeling and prediction,
praditioners should not view reliability models as having the aility to make highly acarate
predictions of future software reliability. Rather, software managers shoud interpret these



predictions in two significant ways. a) providing increased confidence, when used as part of an
integrated SRE process that the softwareis sfeto deploy; and 2) providing boundonthereliability
of the deployed software (e.g., high confidencethat in operationthetimeto next fail ure will exceed
the predicted value and the predicted value will safely exceed the misgon duation).
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