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Abstract 

 
The Space Shuttle avionics software represents a successful integration of many of the computer 

industry's most advanced software engineering practices and approaches. Beginning in the late 
1970's this software development and maintenance project has evolved one of the world's most 
mature software processes applying the principles of the highest levels of the Carnegie Mellon 
University Software Engineering Institute's Capabilit y Maturity Model, Trusted Software 
Methodology, and ISO 9001 Standards. This software process, considered to be a "best practice" by 
many software industry organizations includes state-of-the-practice software reliabilit y engineering 
 methodologies. Life-criti cal Shuttle avionics software produced by this process is recognized to be 
among the highest quality and highest reliabilit y software in operation in the world. This case study 
explores the successful use of extremely detailed fault and failure history, throughout the software 
life cycle, in the application of software reliabilit y engineering techniques to gain insight into the 
flight-worthiness of the software and to suggest "where to look" for remaining defects. The role of 
software reliabilit y models and failure prediction techniques is examined and explained to allow the 
use of these approaches on other software projects. One of the most important aspects of such an 
approach, "how to use and interpret the results" of the application of such techniques is addressed . 
 
Keywords: Verification and validation, software reliabilit y measurement and prediction, safety 
criti cal software, risk analysis.  
      

Space Shutt le Flight Software Application 

The Space Shuttle  Primary Avionics Software Subsystem (PASS) represents a successful 
integration of many of the computer industry's most advanced software engineering practices and 
approaches. Beginning in the late 1970's this software development and maintenance project has 
evolved one of the world's most mature software processes applying the principles of the highest 
levels of the Software Engineering Institute's Capabilit y Maturity Model and ISO 9001 Standards. 
This software process, considered to be a "best practice" by many software industry organizations 
includes state-of-the-practice software reliabilit y engineering (SRE) methodologies. Life-criti cal 
PASS produced by this process is recognized to be among the highest quality and highest reliabilit y 
software in operation in the world. Using this application, we show how SRE can be applied to: 
interpret software reliabilit y predictions, support verification and validation of the software,  assess 
the risk of deploying the software, predict the reliabilit y of the software,  develop test strategies to 
bring the software into conformance with reliabilit y specifications, and make reliabilit y decisions 
regarding deployment of the software.  
 

 Reliabilit y predictions are currently used by Lockheed-Martin Space Information Systems to add 
confidence to established positions regarding low failure probabiliti es for the PASS that are based on 
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formal software certification processes. It is the purpose of this case study to share the experience 
obtained from the use of SRE on this project, since this application is judged by the Lockheed-
Martin team to be a successful attempt to apply SRE to this software. The SRE techniques and 
concepts employed by Lockheed-Martin should be of value for other software systems.  
 

Interpretation of Software Reliabili ty Predictions 
 

Successful use of statistical modeling in predicting the reliabilit y of a software system requires a 
thorough understanding of precisely how the resulting predictions are to be interpreted and applied 
[9]. The PASS (430 KLOC) is frequently modified, at the request of NASA, to add or change 
capabiliti es using a constantly improving process. Each of these successive PASS versions 
constitutes an upgrade to the preceding software version. Each new version of the PASS (designated 
as an Operational Increment, OI) contains software code which has been carried forward from each 
of the previous versions ("previous-version subset") as well as new code generated for that new 
version ("new-version subset").We have found that by applying a reliabilit y model independently to 
the code subsets according to the following rules, we can  obtain satisfactory composite predictions 
for the total version: 
 
(1) all new code developed for a particular version does use a nearly constant process. 
 
(2) all code introduced for the first time for a particular version does, as an aggregate, build up the 

same "shelf-li fe" and operational execution history 
 
(3) unless subsequently changed for a newer capabilit y, thereby becoming "new code" for a later 

version, all new code is only changed thereafter to correct faults. 
 

It is essential to recognize that this approach requires a very accurate code change history so that 
every failure can be uniquely attributed to the version in which the defective line(s) of code  were 
first introduced. In this way it is possible to build a separate failure history for the new code in each 
release. To apply SRE to your software system  you should consider breaking your systems and 
processes down into smaller elements to which a reliabilit y model can be more accurately applied. 
Using this approach, we have been successful in applying SRE to predict the reliabilit y of the PASS 
for NASA.  
 
Estimating Execution Time  
 

We estimate execution time of segments of the PASS software by analyzing records of test cases 
in digital simulations of operational flight scenarios as well as records of actual use in Shuttle 
operations. Test case executions are only counted as "operational execution time" for previous-
version subsets of the version being tested if the simulation fidelity very closely matches actual 
operational conditions. Pre-release test execution time for the new code actually being tested in a 
version is never counted as operational execution time.  We use the failure history and operational 
execution time history for the new-code subset of each version to generate an individual reliabilit y 
prediction for that new code in each version by separate applications of the reliabilit y model. This 
approach places every line of code in the total PASS into one of the subsets of "newly" developed 
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code, whether "new" for  the original version or any subsequent version. We then represent the total 
reliabilit y of the entire  software system as that of a composite system of separate components ("new-
code subsets"), each having an individual execution history and reliabilit y, connected in series. 
Lockheed-Martin is currently using this approach to apply the Schneidewind [8,9] model as a means 
of predicting a "conservative lower bound" for the PASS reliabilit y. 
 
Interpretations and Credibili ty  
 

The two most criti cal factors in establishing credibilit y in software reliabilit y predictions are the 
validation method and the way the predictions are interpreted. For example, a "conservative" 
prediction can be interpreted as providing an "additional margin of confidence" in the software 
reliabilit y, if that predicted reliabilit y already exceeds an established "acceptable level" or 
requirement. You may not be able to validate that you can predict the reliabilit y of your software 
precisely, but you can demonstrate that with "high  confidence" you can predict a lower bound on the 
reliabilit y of that software within a specified environment. If you can use historical failure data at a 
series of previous dates (and you have the actual data for the failure history following those dates), 
you should be able to compare the predictions to the actual reliabilit y and evaluate the performance 
of the model(s) used. You should take all these factors into consideration as you establish validation 
success criteria. This will also significantly enhance the credibilit y of your predictions among  those 
who must make decisions based on your results. 
 

Verification and Validation 
 

Software reliabilit y measurement and prediction are useful approaches to verify and validate 
software. Measurement refers to collecting and analyzing data about the observed reliabilit y of 
software, for example the occurrence of failures during test. Prediction refers to using a model to 
forecast future software reliabilit y, for example failure rate during operation. Measurement also 
provides the failure data that is used to estimate the parameters of reliabilit y models (i.e., make the 
best fit of the model to the observed failure data). Once the parameters have been estimated, the 
model is used to predict the future reliabilit y of the software. Verification ensures that the software 
product, as it exists in a given project phase, satisfies the conditions imposed in the preceding phase 
(e.g., reliabilit y measurements of safety critical software components obtained during test conform to 
reliabilit y specifications made during design) [5]. Validation ensures that the software product, as it 
exists in a given project phase, which could be the end of the project, satisfies requirements (e.g., 
software reliabilit y predictions obtained during test correspond to the reliabilit y specified in the 
requirements) [5].  
 

Another way to interpret verification and validation is that it builds confidence that software is 
ready to be released for operational use. The release decision is crucial for systems in which software 
failures could endanger the safety of the mission and crew (i.e., safety criti cal software). To assist in 
making an informed decision, we integrate software risk analysis and reliabilit y prediction, and we 
are evaluating stopping rules for testing. This approach is applicable to all safety criti cal software. 
Improvements in the reliabilit y of  software, where the reliabilit y measurements and predictions are 
directly related to mission and safety, contribute to system safety. 
Reliabili ty Measurements and Predictions 
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There are a number of measurements and predictions that can be made of reliabilit y to verify and 

validate the software. Among these are remaining failures, maximum failures, total test time required 
to attain a given fraction of remaining failures, and time to next failure. These have been shown to be 
useful measurements and predictions for: 1) providing confidence that the software has achieved 
reliabilit y goals; 2)  rationalizing how long to test a software component (e.g., testing suff iciently 
long to verify that the measured reliabilit y conforms to design specifications); and 3) analyzing the 
risk of not achieving remaining failure and time to next failure goals [6]. Having predictions of the 
extent to which the software is not fault free (remaining failures) and whether a failure it is li kely to 
occur during a mission (time to next failure) provide criteria for assessing the risk of deploying the 
software. Furthermore, fraction of remaining failures can be used as both an operational quality goal 
in predicting total test time requirements and, conversely, as an indicator of operational quality as a 
function of total test time expended [6]. 
 

The various software reliabilit y measurements and predictions can be divided into the following 
two categories to use in combination to assist in assuring the desired level of reliabilit y  of the 
software in safety criti cal systems li ke the PASS. The two categories are: 1) measurements and 
predictions that are associated with residual software faults and failures, and 2) measurements and 
predictions that are associated with the abilit y of the software to complete a mission without 
experiencing a failure of a specified severity. In the first category are: remaining failures, maximum 
failures,  fraction of remaining failures, and total test time required to attain a given number or 
fraction of remaining failures. In the second category are: time to next failure and total test time 
required to attain a given time to next failure. In addition, there is the risk associated with not 
attaining the required remaining failures and time to next failure. Lastly, there is operational quality 
that is derived from fraction of remaining failures. With this type of information a software manager 
can determine whether more testing is warranted or whether the software is suff iciently tested to 
allow its release or unrestricted use. These predictions provide a quantitative basis for achieving  
reliabilit y goals [2]. 
 

Risk Assessment 
 

 Safety Risk pertains to executing the software of a safety criti cal system where there is the 
chance of injury (e.g., astronaut injury or fatality), damage (e.g., destruction of the Shuttle), or loss 
(e.g., loss of the mission)  if a serious software failure occurs during a mission. In the case of the 
Shuttle PASS, where the occurrence of even trivial failures is extremely rare, the fraction of those 
failures that pose any safety or mission success impact is too small to be statistically significant. As a 
result, for this approach to be feasible, all failures (of any severity) over the entire 20-year li fe of the 
project have been included in the failure history database for this analysis. Therefore, the risk 
criterion metrics to be discussed for the Shuttle quantify the degree of risk associated with the 
occurrence of any software failure, no matter how insignificant it may be. The approach used can be 
applied to Safety Risk where suff icient data exist.  



 

  
We are experimenting with an algorithm, which uses of the Schneidewind Software Reliabilit y 

Model to compute a parameter: fraction of remaining failures as a function of the archived failure 
history during test and operation [6]. The prediction methodology uses this parameter and other 
reliabilit y quantities to provide bounds on total test time, remaining failures, operational quality, and 
time to next failure that are necessary to meet arbitrarily defined Shuttle software reliabilit y levels. 
The total test time versus fraction of remaining failures  curve shows a pronounced asymptotic 
characteristic that indicates the possibilit y of big gains in reliabilit y as testing continues; eventually 
the gains become marginal as testing continues.  
 
  Two criteria for software reliabilit y levels will be defined. Then these criteria will be applied to 
the risk analysis of safety criti cal software, using the PASS as an example. In the case of the Shuttle 
example, the "risk" will represent the degree to which the occurrence of failures does not meet 
required reliabilit y  levels, regardless of how insignificant the failures may be.  Next, a variety of 
prediction equations that are used in reliabilit y prediction and risk analysis will be defined and 
derived; included is the relationship between time to next failure and reduction in remaining failures. 
Then it is shown how the prediction equations can be used to integrate testing with reliabilit y and 
quality. An example is shown of how the risk analysis and reliabilit y predictions can be used to make 
decisions about whether the software is ready to deploy; this approach could be used to determine 
whether a software system is safe to deploy. 
 

 Criteria for Reliabili ty 
 

If the reliabilit y  goal is the reduction of failures of a specified severity to an acceptable level of 
risk [7], then for software to be ready to deploy, after having been tested for total time tt, it must 
satisfy the following criteria: 
 
1) predicted remaining failures r(tt)<rc,      (1) 
where rc is a specified criti cal value , and 
 
2) predicted time to next failure TF(tt)>tm,     (2) 
where tm is mission duration. The total time tt could represent a Safe/Unsafe criterion, or the time to 
remove all faults regardless of severity (as used in the Shuttle example).  
 

For systems that are tested and operated continuously li ke the Shuttle, tt, TF(tt), and tm are 
measured in execution time. Note that, as with any  methodology for assuring software reliabilit y, 
there is no guarantee that the expected level will be achieved. Rather, with these criteria, the 
objective is  to reduce the risk of deploying the software to a "desired" level. 
 



 

Remaining Failures Cr iterion 
 

Using the  assumption  that the faults that cause failures are removed (this is the case for the 
Shuttle), criterion 1 specifies that the residual failures and faults must be reduced to a level where the 
risk of operating the software is acceptable. As a practical matter, rc=1 is suggested. That is, the goal 
is to reduce the expected remaining failures of a specified severity to less than one before deploying 
the software. The assumption for this choice is that one or more remaining failures would constitute 
an undesirable risk of failures of the specified severity. Thus, one way to specify rc is by failure 
severity level (e.g., include) only li fe threatening failures). Another way, which imposes a more 
demanding criterion, is to specify that rc represents all  severity level, as in the Shuttle example. For 
example, r(tt)<1 would mean that r(tt) must be less than one failure, independent of severity level. 
 

If r(tt)
� rc is predicted, testing would continue for a total time tt'>tt that is predicted to achieve 

r(tt')<rc, using the assumption that more failures will be experienced and more faults will be corrected 
so that the remaining failures will be reduced by the quantity r(tt)-r(tt'). If the developer does not 
have the resources to satisfy the criterion or is unable to satisfy the criterion through additional 
testing, the risk of deploying the software prematurely should be assessed (see the next section). It is 
known that it is impossible to demonstrate the absence of faults [3]; however  the risk of failures 
occurring can be reduced to an acceptable level, as represented by rc. This scenario is shown in 
Figure 1. In case A r(tt)<rc is predicted and the mission begins at tt. In case B r(tt)

� rc is predicted and 
the mission could be postponed until the software is tested for total time tt' when r(tt')<rc is predicted. 
In both cases criterion 2) might also be required for the mission to begin. 
 
Time to Next Failure Cr iter ion 
 

Criterion 2 specifies that the software must survive for a time greater than the duration of the 
mission. If  TF(tt) � tm, is predicted, the software is tested for a total time tt''>tt that is predicted to 
achieve TF(tt")>tm, using the assumption that more failures will be experienced and faults corrected 
so that the time to next failure will be increased by the quantity TF(tt")-TF(tt). Again, if it is infeasible 
for the developer to satisfy the criterion for lack of resources or failure to achieve test objectives, the 
risk of deploying the software prematurely should be assessed (see the next section). This scenario is 
shown in Figure 2. In case A TF(tt)>tm is predicted and the mission begins at tt. In case B TF(tt) � tm is 
predicted and in this case the mission could be postponed until the software is tested for total time tt'' 
when TF(tt")>tm is predicted. In both cases criterion 1) might also be required for the mission to 
begin. If neither criterion is satisfied, the software is tested for a time which is the greater of tt' or tt''. 
 
Total Test Time 
 

The amount of total test time tt can be considered a measure of the degree to which  software 
reliabilit y goals have been achieved. This is particularly the case for systems like the Shuttle where 
the software is subjected to continuous and rigorous testing for several years in multiple faciliti es, 
using a variety of operational and training scenarios (e.g., by Lockheed-Martin in Houston, by NASA 
in Houston for astronaut training, and by NASA at Cape Canaveral). We can view tt as an input to a 
risk reduction process, and r(tt) and TF(tt) as the outputs, with rc and tm as "risk criteria levels" of 
reliabilit y  that control the process. While it must be recognized that total test time is not the only 



 

consideration in developing test strategies and that there are other important factors, li ke the 
consequences for reliabilit y and cost, in selecting test cases [11] nevertheless, for the foregoing 
reasons, total test time has been found to be strongly  positively correlated with reliabilit y growth for 
the Shuttle [9].  
 
Remaining Failures  
 

The mean value of the risk criterion metric (RCM) for criterion 1 is formulated as follows: 
RCM r(tt)= (r(tt)-rc)/rc=(r(tt)/rc)-1                   (3) 
 

Equation (3) is plotted in Figure 3 as a function of tt for rc=1, where positive, zero, and negative 
values correspond to r(tt)>rc, r(tt)=rc, and r(tt)<rc, respectively. In Figure 3, these values correspond to 
the following regions: CRITICAL (i.e., above the X-axis predicted remaining failures are greater 
than the specified value); NEUTRAL (i.e., on the X-axis predicted remaining failures are equal to the 
specified value); and DESIRED (i.e., below the X-axis predicted remaining failures are less than the 
specified value, which could represent a "safe" threshold or in the Shuttle example, an "error-free" 
condition boundary). This graph is for the  Shuttle Operational Increment OID (with many years of 
shelf li fe) : a software system comprised of modules and configured from a series of builds to meet 
Shuttle mission functional requirements.  In this example it can be seen  that at approximately tt=57 
the risk transitions from the CRITICAL region to the DESIRED region. 
 
Time to Next Failure 
 

Similarly the mean value of the risk criterion metric (RCM) for criterion 2 is formulated as 
follows: 
RCM TF(tt)=(tm-TF(tt))/tm=1-(TF(tt))/tm      (4) 
 
Equation (4) is plotted in Figure 4 as a function of tt for tm=8 days (a typical mission duration time 
for this OI), where positive, zero, and negative risk corresponds to TF(tt)<tm, TF(tt)=tm, and TF(tt)>tm,  
respectively.  In Figure 4, these values correspond to the following regions: CRITICAL (i.e., above 
the X-axis predicted time to next failure is less than the specified value); NEUTRAL (i.e., on the X-
axis predicted time to next failure is equal to the specified value); and DESIRED (i.e., below the X-
axis predicted time to next failure is greater than the specified value). This graph is for the Shuttle 
operational increment OIC. In this example the RCM is in the DESIRED region at all values of tt. 

 
Approach to Prediction 

 
In order to support the reliabilit y goal and to assess the risk of deploying the software, various 

reliabilit y and quality predictions are made during the test phase to validate that the software meets 
requirements. For example, suppose the software reliabilit y requirements state the following: 1) 
ideally, after testing the software for  total test time tt, the predicted remaining  failures shall be less 
than one; 2) if the ideal of 1) cannot be achieved due to cost and schedule constraints, time to next 
failure, predicted after testing for total test time tt, shall exceed the mission duration; and 3) the risk 
of not meeting 1) and 2) shall be assessed. Thus, this approach uses a software reliabilit y model to 
predict the following: 1) maximum failures, remaining  failures, and operational quality (as defined 



 

in the next section); 2) time to next failure (beyond the last observed failure); 3) total test time 
necessary to achieve required levels of remaining failures (fault) level, operational quality, and time 
to next failure; and 4) tradeoffs between increases in levels of reliabilit y and quality with increases in 
testing (i.e., cost of testing). 
 

An important concept to note is that reliabilit y will be measured during test; that is, failure data 
will be collected for two purposes: 1) to verify that the observed data conform to the reliabilit y 
specified during design and 2) to provide data for reliabilit y parameter estimation. With regard to 1), 
the observed time to next failure can be compared to the specified quantity. However, in contrast, 
observed remaining failures and maximum failures have no meaning because we don't know how 
many remaining failures (faults) there are at a given time during the li fe of the software and we don't 
know the maximum failures that will have occurred at the end of the li fe of the software. Thus 
remaining failures and maximum failures only have meaning as predicted quantities. However, we 
can make approximations to these quantities for model validation purposes (see the Summary of 
Predictions section). 

 
Prediction Equations 

 
In order to consider the risk of deploying the PASS, various predictions have been made based on 

the Schneidewind Software Reliabilit y Model [1, 8, 9, 10], one of the four models recommended in 
the ANSI/AIAA Recommended Practice for Software Reliabilit y [1].  The equations are derived in the 
next section. They  have been applied to analyze the reliabilit y of the PASS based on the approach 
recommended herein. The Statistical Modeling and Estimation of Reliabilit y Functions for Software 
(SMERFS) [4] is used for all predictions except tt, which is not implemented in SMERFS.   
 

Because the PASS is run continuously, around the clock, in simulation, test, or flight, "time" 
refers to continuous execution time and total test time refers to execution time that is used for testing. 
 Failure count intervals are equal length periods of continuous execution time.  
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predictions [8]; Xs-1 is the observed  failure  count  in  the  range  [1,s-1]; Xs,t is the observed failure 
count in the range [s,t];  and  Xt=Xs-1+Xs,t. Failures are counted against operational increments (OIs). 
Data from  four Shuttle OI's, designated OIA, OIB, OIC, and OID are used in this analysis example.  
 
 Cumulative Failures 
 

When estimates are 
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observed failure data, the predicted failure count in the range [s,t]  is obtained: 
Fs,tY Z [ \ ] ^ _ ` -exp(- a b b c -s+1)))]       (5)  
 
Furthermore, if Xs-1, the observed failure count in the range [1,s-1], is added to equation (5), the 
predicted failure count in the range [1, t]  is obtained: 



 

d e f g h e i j k g l m
-exp(-

k e e f
-s+1)))]+Xs-1       (6)  

 
Failures in an Interval Range 
 

Let t n t2 and subtract  Xt1=Xs-1+Xs,t1, the observed failure count in the range [1,t1], from equation  
(6 ), then obtain the predicted  failure count in the range [t1,t2]: 
F(t1,t2o p q r s t o u v -exp(- t q q w 2-s+1)))]-Xs,t1      (7)  
 
 Maximum Failures 
 

Let t x y  in equation (6 ) and obtain the predicted  failure count in the range [1,y ] (i.e., maximum 
failures over the li fe of the software): 
F( y z { | } ~ � � s-1          (8) 
 
Remaining Failures  
 

To obtain predicted remaining failures r(t) at time t, subtract  Xt=Xs-1+Xs,t from equation (8):  
 � � � � � � � � � � -Xs,t=F( � )-Xt        (9) 

 
r(t) can also be expressed as a function of total test time tt by substituting equation (5) for Xs,t in 

equation (9) and letting t � tt: 
r(tt

� � � � � � � � � � � - � � � t-(s-1)])        (10) 
 
Fraction of Remaining Failures 
 

If equation (9) is divided by equation (8), fraction of remaining failures, predicted at time t is 
obtained: 
p(t)=r(t)/F( � )         (11) 
 
Operational Quali ty 
 

The operational quality of software is the complement of p(t). It is the degree to which software 
is free of remaining faults (failures), using the assumption that the faults that cause failures are 
removed. It is predicted at time t as follows: 
Q(t)=1-p(t)         (12) 
 
Total Test Time to Achieve Specified Remaining Failures 
 

The predicted total test time required to achieve a specified number of remaining failures at tt, 

r(tt), is obtained from equation (10) by solving for tt: 
 

= [log[ /( [r( )])] ] / + (s1)t tt tα β β           (13)   



 

Time to Next Failure 
 

By substituting t2=t+TF(t) in equation (7), letting t1 � t, defining Ft=F(t,t+TF),and solving for TF(t), 

the predicted time for the next Ft failures to occur, when the current time is t, is obtained :  
The terms in TF(t) have the following definitions: 
  
t:  Current interval; 
Xs,t: Observed failure count in the range [s,t]; and 
Ft:  Given number of failures to occur after interval t. 
 

Equations (5)-(11) and (14) are predictors of reliabilit y that can be related to safety or, as in the 
Shuttle example, the error-free condition of the software; equation (13) represents the predicted total 
test time required to achieve stated reliabilit y goals. If a quality requirement is stated in terms of 
fraction of remaining failures, the definition of Q as Operational Quality, equation (12), is the 
degree to which the software meets specified requirements [7]. For example, if a reliabilit y 
specification requires that software is to have no more that 5% remaining failures  (i.e., p=.05, 
Q=.95) after testing for a total of tt intervals, then a predicted Q of .90 would indicate the degree to 
which the software meets the requirement.     

 
Relating Testing to Reliabili ty and Quali ty 

 
Predicting Total Test Time and Remaining Failures  
 

The tradeoff between testing and reliabilit y can be analyzed by first using equation (8) to predict 
maximum failures (F( � )=11.76 for Shuttle OIA). Then, using given values of p and equation (11) and 
letting t � tt, r(tt) is predicted for each value of p. The values of r(tt) are the predictions of remaining 
failures after the OI has been executed for total test time tt. Next the values of r(tt) and equation (13) 
are used to predict corresponding values of tt. The results are shown in Figure 5, where r(tt) and tt are 
plotted against p for OIA. Note that required total test time tt rises very rapidly at small values of p 
and r(tt). Also note that the maximum value of p on the plot corresponds to tt=18 and that smaller 
values correspond to future values of tt (i.e., tt>18). 
 
Predicting Operational Quali ty 
 

Similarly, the tradeoff between testing and quality can be analyzed by using equation (12), which 
is a useful measure of the operational quality of software because it measures the degree to which 
faults have been removed from the software (using the assumption  that the faults that cause failures 
are removed), relative to predicted maximum failures. This type of quality is called operational (i.e., 
based on executing the software) to distinguish it from static quality (e.g., based on the complexity of 
the software). Using given values of p and equations (11) and (12) and letting t � tt, r(tt) and Q are 

(t) = [(log[ /( ( + )]) / ](ts+1)T X FF s,t t

 

for ( / ) > ( + )X Fs,t t

α αβ β

α β
         (14)   



 

computed, respectively. The values of r(tt) are then used in equation (13) to compute tt. Like equation 
(12), equation (13) has the asymptotic property of a great amount of testing required to achieve high 
levels of quality. 

 
Making Reliabili ty Decisions 

 
In making the decision about how long to test, tt, the reliabilit y  criteria and risk assessment 

approach can be applied. Table 1 is used to ill ustrate the process. For tt=18 (when the last failure 
occurred on OIA), rc=1, and tm=8 days (.267 intervals),  remaining failures, RCM  for remaining 
failures, time to next failure, RCM for time to next failure, and operational quality are shown. These 
results indicate that criterion 2 is satisfied but not criterion 1 (i.e., CRITICAL with respect to 
remaining failures); also operational quality is low. 
 

By looking at Table 1, it can be seen that if remaining failures r(18) are reduced by 1 from 4.76 
to 3.76 (non-integer values are possible because the predictions are mean values), the predicted time 
to next failure that would be achieved is TF(18)=3.87 intervals. These predictions satisfy criterion 2 
(i.e., TF(18)=3.87>tm=.267) but not criterion 1 (i.e., r(18)=4.76>rc=1). Note also in  Table 1 that 
fraction of remaining failures p=1-Q=.40 at r(18)=4.76. Now, if testing is continued for a total time 
tt=52 intervals, as shown in Table 1, and remaining failures are reduced from 4.76 to .60, the 
predicted time to next 4.16 failures that would be achieved is 33.94 (34, rounded) intervals. This 
corresponds to tt=18+34=52 intervals. That is, if  testing is continued for an additional 34 intervals, 
starting at interval 18, another 4.16 failures would be expected. These predictions now satisfy 
criterion 1 because r(52)=.60<rc=1. Note also in Table 1 that fraction of remaining failures p=1-
Q=.05 at r(52)=.60. Using the converse of the relationship, provides another perspective, where, if 
testing is continued for an additional TF=34 intervals, starting at interval 18, the predicted reduction 
in remaining failures that would be achieved is 4.16 or r (52)=. 60. 

 
Lastly, Figure 6 shows the Deployment Decision, relevant to the Shuttle (which could be the 

Launch Decision relative to the Shuttle), where remaining failures are plotted against total test time 
for OIA. With these results in hand, the software manager can decide whether to deploy the software 
based on factors such as predicted remaining failures, as shown in Figure 6, along with considering 
other factors such as the trend in reported faults over time, inspection results, etc.. If testing were to 
continue until t t=52, the predictions in Figure 6 and Table 1 would be obtained. These results show 
that criterion 1 is now satisfied (i.e., DESIRED) and operational quality is high. Figure 6 also shows 
that at tt=52,  further  increases would not result in a significant increase in reliabilit y. Also note that 
at tt=52 it is not feasible to make a prediction of TF(52) because the predicted remaining failures is 
less than one. 



 

 
 

Table 1. Reliabili ty Cr iteria Assessment of OIA 
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s* 

 
TF(tt) 
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Q 

 
18 

 
.534 

 
.061 

 
9 

 
4.76 

 
3.76 

 
9 

 
3.87 

 
-13.49 

 
.60 

 
52 

 
.534 

 
.061 

 
9 

 
.60 

 
-.40 

 
9 

 
*  

 
*  

 
.95 

 
* Cannot predict because predicted Remaining Failures is less than one. 

 
Summary of Predictions  

Table 2 shows a summary of remaining and maximum failure predictions compared with actual 
failure data, where available, for OIA, OIB, OIC, and OID. The purpose of this analysis is to validate 
the model for Shuttle applications. Because actual remaining and maximum failures are unknown, 
the assumption is used: that remaining failures are "zero" for those OI's (B, C, and D) that were 
executed for extremely long times (years) with no additional failure reports; correspondingly, for 
these OI's,  the assumption is used: that maximum failures equals total observed failures. 

 
 

Table 2. Predicted Remaining and Maximum Failures versus Actuals 
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r (tt) 

 
Actual r  

 
F( �� ) 

 
Actual F 

 
OIA 

 
18 
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.534 

 
.061 

 
4.76 

 
?A 

 
11.76 

 
7A 

 
OIB 

 
20 

 
1 

 
1.69 

 
.131 

 
0.95 

 
1B 

 
12.95 

 
13B 

 
OIC 

 
20 

 
7 

 
1.37 

 
.126 

 
1.87 

 
2C 

 
12.87 

 
13C 

 
OID 

 
18 

 
6 

 
.738 

 
.051 

 
7.36 

 
4D 

 
17.36 

 
14D 

 
Time of  last recorded failure: 
A. No additional failures have been reported after 17.17 intervals for OIA. 
B. The last recorded failure occurred at  63.67 intervals for OIB. 
C. The last recorded failure occurred at 43.80 intervals for OIC. 
D. The last recorded failure occurred at 65.03 intervals for OID. 
  



 

Table 3 shows a summary of total test time and time to next failure predictions compared with 
actual execution time data, where available, for OIA, OIB, OIC, and OID.  

 
 
Table 3. Predicted Total Test Time and Time to Next Failure versus Actuals 
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OIC 

 
7 

 
24.98 

 
27.07 

 
20 

 
5 

 
4.2 

 
7.63 

 
OID 

 
6 

 
56.84 

 
58.27 

 
18 

 
5 

 
6.4 

 
6.20 

 
* Cannot predict because predicted Remaining Failures is less than one. 
Additional Predictions for OID: 
The following are additional predictions of total test time for OID that are not listed 
in Table 3: tt(r=2)=43.35, Actual=45.17; tt(r=3)=35.47, Actual=23.70. 

 
 

Lessons Learned 

Several important lessons have been learned from our experience of twenty years in developing 
and maintaining the PASS, which you could consider for adoption in your SRE process:  
 
1) No one SRE process method is the "silver bullet" for achieving high reliabilit y. Various methods, 
including formal inspections, failure modes analysis, verification and validation, testing, statistical 
process management, risk analysis, and reliabilit y modeling and prediction must be integrated and 
applied. 
 
2) The process must be continually improved and upgraded. For example, recent experiments with 
software metrics have demonstrated the potential of using metrics as early indicators of future 
reliabilit y problems. This approach, combined with inspections, allows many reliabilit y problems to 
be identified and resolved prior to testing.  
 
3) The process must have feedback loops so that information about reliabilit y problems discovered 
during inspection and testing is fed back not only to requirements analysis and design for the purpose 
of improving the reliabilit y of future products but also to the requirements analysis, design, 
inspection and testing processes themselves. In other words the feedback is designed to improve not 
only the product but also the processes that produce the product. 
 
4) Given the current state-of-the-practice in software reliabilit y modeling and prediction, 
practitioners should not view reliabilit y models as having the abilit y to make highly accurate 
predictions of future software reliabilit y. Rather, software managers should interpret these 



 

predictions in two significant ways: a) providing increased confidence, when used as part of an 
integrated SRE process, that the software is safe to deploy; and 2) providing bounds on the reliabilit y 
of the deployed software (e.g., high confidence that in operation the time to next failure will exceed 
the predicted value and the predicted value will safely exceed the mission duration).   
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